scholarly journals Use of natural bentonite clays in pond fish farming to create optimal concentrations of ammonium ions

2021 ◽  
Vol 262 ◽  
pp. 02021
Author(s):  
Timur Tlupov ◽  
Karina Bambetova ◽  
Kamaludin Magomedov ◽  
Ruslan Kumykov ◽  
Nikolay Khalko

The composition and some sorption properties of bentonite clays, the efficiency of natural waters treatment in pond fish farming from excess ammonium ions using the natural bentonite clay from the Gerpegezhskoye deposit have been studied. The maximum sorption capacity of bentonite clay of this material has been determined. It is found out that when a smaller amount of the sample is added to each liter of the standard solution (0.1 and 0.01 g), higher values of the sorption capacity are identified. To achieve the optimal degree of cleaning of ponds from excess ammonium ions and expediency in terms of reducing the material and labor costs to a minimum, the optimal amount of bentonite was calculated, the use of which would be sufficient to maintain the ammonium ion concentration. The conditions were chosen so that to ensure a decrease in the ammonium nitrogen concentration from 2-3 maximum allowable concentration (MAC) (5-7.5 mg/l) to 0.2-0.8 mg/l. It is shown that the sorption capacity is realized more efficiently when the bentonite weigh decreases to 0.01 g/L, provided that the ammonium ion content in the aqueous medium exceeds the MAC by 2-3 times.

1983 ◽  
Vol 23 (02) ◽  
pp. 387-396 ◽  
Author(s):  
J.M. Paul ◽  
W.F. Johnson ◽  
A. Fletcher ◽  
P.B. Venuto

Abstract This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5 % NaOCl, with the concentration of NH3 in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH3. After the NH3 was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH3, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major pan of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH4HCO3 preceding the oxidation stage. Introduction A leachate that has sometimes been used for in-situ leaching of uranium ores is a solution of ammonium bicarbonate (NH4HCO3) containing an oxidant-usually hydrogen peroxide (H2O2) or oxygen (O2). The ammonium ion (NH4+) introduced into the ore body upon injection of this leachate is exchanged for cations such as calcium (Ca+2 ) and sodium (Na+), which are associated with mineral species in the formation possessing available cation exchange sites. As the indigenous groundwaters reinvade the leached zone, the adsorption process is reversed with NH4+ ions being displaced from process is reversed with NH4+ ions being displaced from the cation exchange sites and returned to the ground-waters. In general, this latter process maintains the ammonia (NH3 (or NH4+ ion) concentration well above the baseline (pre-mining) value in groundwater for extended periods of time in waters produced from wells in or near the mined zone following cessation of leachate injection. Prior to abandonment of an in-situ leach-mining site by the operator, satisfactory restoration of groundwater quality must be demonstrated. Requirements for this demonstration vary with the geographical area. A summary of applicable regulations has been provided by Kasper et al. A review of the state of restoration demonstrations to Sept. 1979 has been given by Tiepel. Most of the in-situ leach operations in south Texas have been conducted in aquifers containing indigenous waters with TDS contents in the 700- to 3,000-ppm range. Ca+ 2, magnesium (Mg+2), and bicarbonate ion (HCO3 ) concentrations are high in these slightly alkaline waters. These equilibrium water compositions indicate that an appreciable fraction of the interlayer ion exchange sites of the smectite clays in the formation are occupied by Ca+2 or Mg+2 ions. SPEJ P. 387


2016 ◽  
Vol 42 (2) ◽  
pp. 33-43 ◽  
Author(s):  
Masoud Moradi ◽  
Mehdi Fazlzadehdavil ◽  
Meghdad Pirsaheb ◽  
Yadollah Mansouri ◽  
Touba Khosravi ◽  
...  

Abstract This research was conducted to study the adsorption of ammonium ions onto pumice as a natural and low-cost adsorbent. The physico-chemical properties of the pumice granular were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Modeling and optimization of a NH4+ sorption process was accomplished by varying four independent parameters (pumice dosage, initial ammonium ion concentration, mixing rate and contact time) using a central composite design (CCD) under response surface methodology (RSM). The optimum conditions for maximum removal of NH4+ (70.3%) were found to be 100 g, 20 mg/l, 300 rpm and 180 min, for pumice dosage, initial NH4+ ion concentration, mixing rate and contact time. It was found that the NH4+ adsorption on the pumice granular was dependent on adsorbent dosage and initial ammonium ion concentration. NH4+ was increased due to decrease the initial concentration of NH4 and increase the contact time, mixing rate and amount of adsorbent.


1980 ◽  
Vol 94 (1) ◽  
pp. 145-150 ◽  
Author(s):  
S. M. Ragab

SummaryThe effect of ammonium ions on artificially imposed water flux and trans-root potential difference was studied in excised sunflower roots. Water movement through the root system decreased and the potential of the xylem sap became less negative with respect to the external medium as the ammonium ion concentration in the external medium increased. It is suggested that ammonium ions appeared to inhibit water uptake either wholly or partially through a general or specific blockage of root metabolism which reflected on the permeability of water through root membranes. The reduction in the trans-root potential was due to the effect of ammonium ions on the original trans-root potential of epidermal root cells. This may indicate that the site of water uptake inhibition lies within the root epidermis.


2021 ◽  
Vol 18 (38) ◽  
pp. 224-241
Author(s):  
Yuri Semenovich PEREGUDOV ◽  
Elena Mikhailovna GORBUNOVA ◽  
Behzod Aminovich OBIDOV ◽  
Ksenia Borisovna KIM ◽  
Sabuhi Ilich oglu NIFTALIEV

Background: Wastewater from the mineral fertilizer production, agribusiness containing ammonium ions causes significant harm to fish farming; therefore, it must be purified before discharge. Ion-exchange sorption is a promising method for isolating ammonium cations. The object of the study was a chemisorption fiber VION KN-1, which has developed surface and high sorption rate. Purpose: To study the sorption kinetics of ammonium cations from aqueous solutions on VION KN-1; to train an ANN to predict the degree of recovery of ammonium ions from wastewater using Statistica Neural Networks Version 13. Methods: The ammonium ion concentration in the solution was established by direct potentiometry. Sorption isotherms were constructed using the method of variable concentrations. To determine the limiting stage, the obtained kinetic dependencies were represented in the coordinates of the Boyd-Adamson equations for internal/external diffusion. Results and Discussion: During sorption from solutions with different ammonium nitrogen contents, the values of distribution coefficients (Kd) are at the level of 2.3ꞏ103 cm3/g, which significantly exceeds this parameter for granular ionites. Experimental sorption data were verified using Freundlich (R2 = 0.9224) and Langmuir (R2 = 0.9996) isotherms. The maximum degree of recovery (over 96 %) was achieved by passing a solution with a concentration of 11.3 mmol/dm3. Using an array of experimental data, the MLP-3-5-1 neural network was trained. The coefficient of determination R2 = 0.999420 obtained for the training sample characterizes high network performance. Conclusions: The Langmuir equation better describes the process of NH4+ sorption on a fibrous sorbent. It is reasonable to use VION KN-1 at the fine treatment stage. Ammonium ion desorption from the fiber was performed by acid solution. The resulting solutions of ammonium salts can be used as liquid fertilizers. The trained neural networks can be used to predict the degree of recovery of ammonium ions by sorbent VION KN-1.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4359
Author(s):  
Jacek Leszczyński

This study investigated the use of weathered halloysite as an ion exchange material for ammonium removal from water. The study was conducted under static and dynamic conditions. The influence of such parameters as the preliminary concentration of ammonium ions, dose of halloysite, and pH was examined in periodic studies. The ion exchange capacity of weathered halloysite under various regeneration conditions such as concentration, excess of regeneration solution and the pH at which the regeneration was performed was also determined. The effect of flow velocity, initial NH4+-ions concentration was studied in column tests and the weathered halloysite’s ion -exchange capacity was also determined. The best results of ammonium ion removal were obtained at pH 6. The equilibrium isotherms were described using the Langmuir and Freundlich models. The results of periodic studies show a good fit for the data of both models, with Langmuir isotherms reflecting the removal of ammonium ions better. A good match for the data (R2 > 0.99) was provided by a pseudo second-order kinetic model. The obtained results indicate that a properly prepared halloysite can be a useful mineral for the removal of dangerous substances, such as ammonium ions, present in natural waters.


2007 ◽  
Vol 18 (1) ◽  
pp. 189-194 ◽  
Author(s):  
Cláudia F. B. Coutinho ◽  
Alfredo A. Muxel ◽  
Crystian G. Rocha ◽  
Débora A. de Jesus ◽  
Rení V. S. Alfaya ◽  
...  

2021 ◽  
Author(s):  
Petru Ciorba ◽  
◽  
Elena Zubcov ◽  
Nina Bagrin ◽  
Liliana Teodorof ◽  
...  

This article presents the results of studying the content of mineral (ammonium ions, nitrites and nitrates) and organic nitrogen compounds in water samples collected from the Dniester river in 2020. In the study are examines the seasonal dynamics of the forms of mineral nitrogen, total nitrogen and the correlation between organic and mineral nitrogen. Limits of ammonium ion concentration in the Dniester river varied between 0.002 mg N/l and 0.93 mg N/l, nitrite ions 0.002 mg N/l and 0.05 mg N/l, nitrate ions 0.002 mg N/l - 1.36 mg N/l.


Author(s):  
A. Safonov ◽  
N. Andriushchenko ◽  
N. Popova ◽  
K. Boldyrev

Проведен анализ сорбционных характеристик природных материалов (вермикулит, керамзит, перлит, цеолит Трейд ) при очистке кадмий- и хромсодержащих сточных вод с высокой нагрузкой по ХПК. Установлено, что цеолит обладает максимальными сорбционными характеристиками для Cd и Cr и наименьшим биологическим обрастанием. При использовании вермикулита и керамзита или смесей на их основе можно ожидать увеличения сорбционной емкости для Cd и Сr при микробном обрастании, неизбежно происходящем в условиях контакта с водами, загрязненными органическими соединениями и биогенами. При этом биообрастание может повысить иммобилизационную способность материалов для редоксзависимых металлов за счет ферментативных ресурсов бактериальных клеток, использующих их в качестве акцепторов электронов. Эффект микробного обрастания разнонаправленно изменял параметры материалов: для Cr в большинстве случаев уменьшение и для Cd значительное увеличение. При этом дополнительным эффектом иммобилизации Cr является его биологическое восстановление биопленками. Варьируя состав сорбционного материала, можно подбирать смеси, оптимально подходящие для очистки вод инфильтратов с полигонов твердых бытовых отходов с высокой нагрузкой по ХПК и биогенным элементам как при использовании in situ, так и в системах на поверхности.The analysis of the sorption characteristics of natural materials (vermiculite, expanded clay, perlite, Trade zeolite) during the purification of cadmium and chromium-containing leachate with a high COD load was carried out. It was determined that zeolite had the maximum sorption capacity for Cd and Cr and the lowest biological fouling. When using vermiculite and expanded clay or mixtures on their basis, one can expect an increase in the sorption capacity for Cd and Cr during microbial fouling that inevitably occurs during contacting with water polluted with organic compounds and nutrients. In this case biofouling can increase the immobilization properties of materials for redox-dependent metals due to the enzymatic resources of bacterial cells that use them as electron acceptors. The effect of microbial fouling changed the parameters of materials in different directions: for Cr, in most cases, downward, and for Cd, significantly upward. Moreover, chromium biological recovery by biofilms is an additional effect of immobilization. Varying the composition of the sorption material provides for selecting mixtures that are optimally suitable for the purification of leachates from solid waste landfills with high COD and nutrients load, both when used in situ and in surface systems.


2021 ◽  
Vol 13 (3) ◽  
pp. 1502
Author(s):  
Maria Xanthopoulou ◽  
Dimitrios Giliopoulos ◽  
Nikolaos Tzollas ◽  
Konstantinos S. Triantafyllidis ◽  
Margaritis Kostoglou ◽  
...  

In water and wastewater, phosphate anions are considered critical contaminants because they cause algae blooms and eutrophication. The present work aims at studying the removal of phosphate anions from aqueous solutions using silica particles functionalized with polyethylenimine. The parameters affecting the adsorption process such as pH, initial concentration, adsorbent dose, and the presence of competitive anions, such as carbonate, nitrate, sulfate and chromate ions, were studied. Equilibrium studies were carried out to determine their sorption capacity and the rate of phosphate ions uptake. The adsorption isotherm data fitted well with the Langmuir and Sips model. The maximum sorption capacity was 41.1 mg/g at pH 5, which decreased slightly at pH 7. The efficiency of phosphate removal adsorption increased at lower pH values and by increasing the adsorbent dose. The maximum phosphate removal was 80% for pH 5 and decreased to 75% for pH 6, to 73% for pH 7 and to 70% for pH 8, for initial phosphate concentration at about 1 mg/L and for a dose of adsorbent 100 mg/L. The removal rate was increased with the increase of the adsorbent dose. For example, for initial phosphate concentration of 4 mg/L the removal rate increased from 40% to 80% by increasing the dose from 0.1 to 2.0 g/L at pH 7. The competitive anions adversely affected phosphate removal. Though they were also found to be removed to a certain extent. Their co-removal provided an adsorbent which might be very useful for treating waters with low-level multiple contaminant occurrence in natural or engineered aquatic systems.


Sign in / Sign up

Export Citation Format

Share Document