scholarly journals Influence of leaching parameters on the vanadium extraction from petroleum coke

2021 ◽  
Vol 266 ◽  
pp. 08002
Author(s):  
A.A. Kudinova ◽  
N.K. Kondrasheva ◽  
V.A. Rudko

More than 60 trace elements, including rare metals, can be found in heavy oils. The most valuable component of oils and petroleum products is vanadium. It is used as an alloying agent to create extra strong steel, as a cathode for lithium-ion batteries, and also as a catalyst in the chemical industry. Nowadays studies of various methods for extracting vanadium from heavy oils and petroleum products are actively carried out. This work presents the method of alkaline and acid leaching of vanadium from petroleum coke and also results of the examination of influence of factors such as the duration of the process (0.5, 1.5 and 2.5 h) and the ratio of solid and liquid phases (1:2, 1:3 and 1:4). The highest yield of vanadium 80% is observed using sulfuric acid with the process duration is 1.5 hours and the ratio S/L = 1:4

Author(s):  
Anna A. Kudinova ◽  
◽  
Natalia K. Kondrasheva ◽  
Viacheslav A. Rudko ◽  
◽  
...  

Petroleum coke was used as a feedstock for the leaching process to produce vanadium oxide (V). The process was carried out in the presence of H2SO4 (12%) or NaOH (10%) with different ratios of solid and liquid phases (1:4, 1:3, 1:2), as well as different time of the process. The influence of the factors on the degree of vanadium extraction was studied. It was shown that sulfuric acid is a more efficient leaching agent compared to sodium hydroxide. Studies of the quality of the coke obtained after leaching were carried out, including the determination of the fine structure and thermal stability.


2019 ◽  
Vol 6 (9) ◽  
pp. 191061 ◽  
Author(s):  
Borui Liu ◽  
Qing Huang ◽  
Yuefeng Su ◽  
Liuye Sun ◽  
Tong Wu ◽  
...  

Environmentally friendly acid-leaching processes with three organic acids (maleic, glycolic and acetoacetic) were developed to recover valuable metals from the cathodic material of spent lithium-ion batteries (LiCoO 2 ). The leaching efficiencies of Li and Co by the maleic acid were 99.58% and 98.77%, respectively. The leaching efficiencies of Li and Co by the glycolic acid were 98.54% and 97.83%, while those by the acetoacetic acid were 98.62% and 97.99%, respectively. The optimal acid concentration for the maleic acid-, glycolic acid- and acetoacetic acid-leaching processes were 1, 2 and 1.5 mol l –1 , respectively, while their optimal H 2 O 2 concentrations were 1.5, 2 and 1.5 vol%, respectively. The optimal solid/liquid ratio, temperature and reaction time for the leaching process of the three organic acids was the same (10 g l −1 , 70°C, 60 min). The thermodynamic formation energy of the leaching products and the Gibbs free energy of the leaching reactions were calculated, and the kinetic study showed that the leaching processes fit well with the shrinking-core model. Based on the comparison in the leaching parameters, the efficacy and availability of the three acids is as follows: maleic acid > acetoacetic acid > glycolic acid.


2021 ◽  
Author(s):  
Yifan Song ◽  
Boyi Xie ◽  
Shuya Lei ◽  
Shaole Song ◽  
Wei Sun ◽  
...  

As a widely used power battery, the scrapping boom of LiFePO4 (LFP) battery is coming. Both pyrometallurgical repair and hydrometallurgical processes have been applied in the recycling of spent LFP...


2018 ◽  
Vol 775 ◽  
pp. 419-426 ◽  
Author(s):  
Wei Sheng Chen ◽  
Hsing Jung Ho

The paper concerns an approach about using environmental technology and hydrometallurgical process to the recovery of valuable metal from waste cathode material produced during the manufacture of lithium-ion batteries. It is noteworthy that the content of nickel, manganese and cobalt from cathode material are in the extraordinary large proportion. In the acid leaching step, the essential effects of H2SO4 concentration, H2O2 concentration, leaching time, liquid-solid mass ratio and reaction temperature with the leaching percentage were investigated. The cathode material was leached with 2M H2SO4 and 10 vol.% H2O2 at 70 °C and 300 rpm using a liquid-solid mass ratio of 30 ml/g and the leaching efficiency of cobalt was 98.5%, lithium was 99.8%, nickel was 98.6% and manganese was 98.6% under optimum conditions. Kinetic study demonstrates the activation energies for those analyzed metals with Arrhenius equation and manifests the data with hybrid reaction control mechanism. The process was proved from activation energies ranged from 27.79 to 47.25 kJ/mol. Finally, the valuable metals will be leached in sulfuric acid effectively.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6263
Author(s):  
Zhiwen Zhou ◽  
Yiming Lai ◽  
Qin Peng ◽  
Jun Li

An urgent demand for recycling spent lithium-ion batteries (LIBs) is expected in the forthcoming years due to the rapid growth of electrical vehicles (EV). To address these issues, various technologies such as the pyrometallurgical and hydrometallurgical method, as well as the newly developed in-situ roasting reduction (in-situ RR) method were proposed in recent studies. This article firstly provides a brief review on these emerging approaches. Based on the overview, a life cycle impact of these methods for recovering major component from one functional unit (FU) of 1 t spent EV LIBs was estimated. Our results showed that in-situ RR exhibited the lowest energy consumption and greenhouse gas (GHG) emissions of 4833 MJ FU−1 and 1525 kg CO2-eq FU−1, respectively, which only accounts for ~23% and ~64% of those for the hydrometallurgical method with citric acid leaching. The H2O2 production in the regeneration phase mainly contributed the overall impact for in-situ RR. The transportation distance for spent EV LIBs created a great hurdle to the reduction of the life cycle impact if the feedstock was transported by a 3.5–7.5 t lorry. We therefore suggest further optimization of the spatial distribution of the recycling facilities and reduction in the utilization of chemicals.


Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 376 ◽  
Author(s):  
Qian Zhang ◽  
Qicheng Feng ◽  
Shuming Wen ◽  
Chuanfa Cui ◽  
Junbo Liu

In this work, oxidizing roasting was combined with leaching to separate copper, lead, and zinc from a concentrate obtained by bulk flotation of a low-grade ore sourced from the Jiama mining area of Tibet. The flotation concentrate contained 7.79% Cu, 22.00% Pb, 4.81% Zn, 8.24% S, and 12.15% CaO; copper sulfide accounted for 76.97% of the copper, lead sulfide for 25.55% of the lead, and zinc sulfide for 67.66% of the zinc. After oxidizing roasting of the flotation concentrate, the S content in the roasting slag decreased to 0.22%, indicating that most sulfide in the concentrate was transformed to oxide, which was beneficial to leaching. The calcine was subjected to sulfuric acid leaching for separation of copper, lead, and zinc; i.e., copper and zinc were leached, and lead was retained in the residue. The optimum parameters of the leaching process were: a leaching temperature of 55 °C; sulfuric acid added at 828 kg/t calcine; a liquid:solid ratio of 3:1; and a leaching time of 1.5 h. Under these conditions, the extents of leaching of copper and zinc were 87.43% and 64.38%, respectively. Copper and zinc in the leaching solution could be further separated by electrowinning. The effects of leaching parameters on the extents of leaching of copper and zinc were further revealed by X-ray diffraction and scanning electron microscopy analysis.


RSC Advances ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 1387-1395 ◽  
Author(s):  
Yi-zhong Yuan ◽  
Yi-min Zhang ◽  
Tao Liu ◽  
Tie-jun Chen

Carbon in stone coal has a double-edged function in the microwave roasting-acid leaching of stone coal; it provides stone coal with good heating characteristics, but it hinders the oxidization of vanadium and causes the sintering phenomenon.


Sign in / Sign up

Export Citation Format

Share Document