scholarly journals Testing of MTF replacement dynamic model for model example

2021 ◽  
Vol 273 ◽  
pp. 07022
Author(s):  
Arthur Alukhanyan ◽  
Olga Panfilova ◽  
Vadim Alukhanyan

The article is devoted to testing of economic and mathematical model for reequipment of machine-tractor fleet (MTF) of agricultural enterprise using the model example simulating real technological and economical processes used at the enterprise. Moreover, the daily capacity of machines, schedule of optimum agrotechnical terms for operations, etc. are given as basic examples of the technological process in the model example. Moreover, the algorithm for correction of optimum solving consisting of eight steps is given in the research. The value of the next controlled variable by its rounding to the integer value is recorded at each step of the algorithm.

2021 ◽  
pp. 68-71
Author(s):  

The use of mathematical models is of great importance for the automation of the design of technological processes. Representation of the geometric parameters of the part in the form of mathematical models allows automating the development of the structure and calculation of the parameters of the technological process, which is important for the complete digitalization of the technological preparation of production. Keywords: technological process, design, mathematical model, digitalization. [email protected]


2015 ◽  
Vol 1084 ◽  
pp. 678-683
Author(s):  
Oleg P. Savitsky ◽  
Valeriy F. Dyadik ◽  
Oksana P. Kabrysheva

This paper is devoted to one of the most urgent problems in the automation of fluorine production (FP) processes: the development of a dynamic model of the hydrodynamic regime. The paper suggests a dynamic model represented in the form that provides the effective use of up-to-date methods of synthesis and analysis for control algorithms. The model is a set of dynamic models of individual units and devices that have a significant impact on the processes in the technological scheme.


Author(s):  
Roddie R. Judkins ◽  
Timothy R. Armstrong ◽  
Solomon D. Labinov

A Universal Mathematical Model (UMM) has been developed and applied to a combined-cycle, fossil-fuel power system. The UMM includes static and dynamic models of the system. The static model allows for thermodynamic and thermochemical analyses of the basic system components (reformer, turbine, membrane separator, fuel cell, air compressor, heat exchanger, and other components) and the entire system. The dynamic model provides for mode-to-mode (a partial load to a full or nominal load) time determination for the individual system components and for the entire system. System transient modes were studied, and it was determined that the reforming reactor transition time should be no less than 200 sec, which results in a system mode-to-mode transition time of three to four minutes.


2015 ◽  
Vol 725-726 ◽  
pp. 1224-1230 ◽  
Author(s):  
Vyacheslav Ilyichev ◽  
Vitaliy Kolchunov ◽  
Sergey Emelyanov ◽  
Natalia Bakaeva

Here is presented an approach to the simulation of complex in its multicomponent structure for implementing the functions of city activity. The approach is based on the paradigm of the city compatibility with the Biosphere and phrased on the principles of its self-organization. A conceptual model of the urban livelihood system in the form of a multicomponent natural and technogenic structure is also described. A mathematical model of an open dynamic compatible with the Biosphere urban livelihood system with the choice of the governing parameters for management is developed.


1993 ◽  
Vol 115 (1) ◽  
pp. 70-77 ◽  
Author(s):  
R. J. Chang ◽  
T. C. Jiang

The dynamic equation of a robotic manipulator with joint irregularities is formulated and employed for the prediction of the positioning accuracy and precision of a robotic manipulator in high-speed operation. The mathematical model is derived by incorporating a dynamic model of irregular joints in an ideal robotic equation and employing the Lagrangian formulation. The joint irregularity is modelled as an elastic sliding pair which consists of a journal with an irregular surface sliding on the surface of an elastic bearing. By employing Gaussian linearization methods, the operational accuracy and precision of the robotic manipulator are obtained from mean and covariance propagation equations of the robotic system. The operation of a single-arm robotic manipulator with joint irregularities is investigated for demonstrating the applications of the present techniques.


2012 ◽  
Vol 271-272 ◽  
pp. 1178-1182
Author(s):  
Juan Juan Xing

The paper uses the object-oriented modeling method to analysis the hydraulic AGC system and the operation mechanism about a strip mill. It discusses the Coulomb force and roll eccentricity which usually were ignored on rolling process. And improves the mathematical model that reflect the actual AGC system. By simulation, we compared it with the actual rolling process and verified the correction of the mathematical model. And, it will make the good foundation for on-the-spot practical application.


1999 ◽  
Vol 4 (6) ◽  
pp. 489-504 ◽  
Author(s):  
N. U. Ahmed ◽  
M. A. Rahim

The paper is concerned with the development of a rigorous mathematical model describing the dynamics of criminal population subject to sentencing policies of any penal (legal) system. The model enables evaluation of the impact of preventive measures used in the society and correctional measures used by the penitentiaries. A performance index reflecting the effectiveness of such measures and the cost to the society for providing the same is introduced and the question of optimality discussed.


2013 ◽  
Vol 475-476 ◽  
pp. 1375-1381
Author(s):  
Jian Rui Duan ◽  
Jin Yao ◽  
Hua Li

In order to calculate the friction work of lock-up clutch, which come from the lock-up process of hydraulic torque converter, this article established a simplified dynamic model of the engine and hydraulic torque converter , according to the route of power transmission and the rule of moment balance. And then the mathematical model of the lock-up process was deduced. This article reached a calculation method of lock-up clutch friction work by the mathematical model , and did some further simplified. Meanwhile, the lock-up process was simulated by Matlab/Simulink. By analyzing the simulatin resultthe computed result of machinery bookthe computed result of the improved method, the correctness of the improved method was verified.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Yongguang Liu ◽  
Xiaohui Gao ◽  
Chunxu Chen

Due to the existence of multicoupled nonlinear factors in the giant magnetostrictive actuator (GMA), building precise mathematical model is highly important to study GMA’s characteristics and control strategies. Minor hysteresis loops near the bias magnetic field would be often applied because of its relatively good linearity. Load, friction, and disc spring stiffness seriously affect the output characteristics of the GMA in high frequency. Therefore, the current-displacement dynamic minor loops mathematical model coupling of electric-magnetic-machine is established according to Jiles-Atherton (J-A) dynamic model of hysteresis material, GMA structural dynamic equation, Ampere loop circuit law, and nonlinear piezomagnetic equation and demonstrates its correctness and effectiveness in the experiments. Finally, some laws are achieved between key structural parameters and output characteristics of GMA, which provides important theoretical foundation for structural design.


Sign in / Sign up

Export Citation Format

Share Document