scholarly journals General Comparison of Seismic Design between the Chinese Code and the European code

2021 ◽  
Vol 276 ◽  
pp. 01031
Author(s):  
Ding Zhiquan ◽  
Wang Zhizhao ◽  
Li Bo

To promote overseas projects, it is necessary for designers to understand and distinguish the similarities and differences between the Chinese standard GB50011(Edition 2016) and the European standard EN1998. By referring to relevant papers, comparing the ground types, response spectrum, structural importance factors, seismic precaution level and seismic zoning between the GB50011(Edition 2016) and EN1998, it can be concluded that the overall seismic design concepts in the Chinese and European codes are similar but there are some small differences in ground type classification, impact of ground type on seismic action, response spectrum, importance factor, seismic precautionary criterion, seismic precautionary measures, and seismic zone.

Author(s):  
Bruno Briseghella ◽  
Junzhen Chen ◽  
Junqing Xue ◽  
Davide Lavorato ◽  
Camillo Nuti

<p>The function of bridges would be significantly influenced by the damage of piers during the earthquake, which would affect the rescue and reconstruction after the earthquake. Therefore, it is of great significance to carry out the comparative study on the seismic design and check of piers by the Chinese and European codes. The results show that the seismic design concepts of piers in the Chinese and European codes are the same. The behaviour factor and the seismic importance factor are used to reduce the seismic action in the European code and the Chinese code, respectively. For the check of shear capacity, the contributions of stirrups and concrete are separately considered in the European code, while they are simultaneously considered in the Chinese code. The steel weight of the pier designing by using Chinese codes is lower than that using European codes. The requirement on the minimum transverse reinforcement ratio in the European code is higher than that in the Chinese code.</p>


Author(s):  
Deeshma D

Construction of RC buildings in preferred locations in the north & eastern hilly regions have increased during the last few decades due to urbanization, population increase, and high influx of tourists. The buildings situated in hilly areas are much more prone to seismic environment in comparison to the buildings that are located in flat regions. Structures on slopes differ from other buildings since they are irregular both vertically and horizontally and therefore susceptible to severe damage when subjected to seismic action. The columns of ground storey have varying height due to sloping ground. This paper presents the comparative analysis of various configurations of 15 storied building with to be found on varying slope with different plan and different structural arrangements situated on seismic zone IV. This study compares various reinforced concrete models framed and analysed their response against dynamic loading to identify and struggle the worst possible scenario. The study is carried out for a combination of three different slopes and different building configuration by response spectrum analysis method and various parameters are compared against various constraints.


Author(s):  
Alok Bhowmick ◽  
Harpreet Singh

<p>Evolution of seismic design provisions in various Indian Standards over the last 50 years have been reviewed in this paper. Seismic provisions of Bureau of Indian Standards (BIS) code (IS 1893), Indian Road Congress (IRC) standard (IRC:6 &amp; IRC:SP:114) and Indian Railway standards (IRS code) are compared. Design parameters for comparison include the seismic zone factor / peak ground acceleration, importance factor, local soil condition, design spectra and response reduction factor.</p>


In the present study, the behavior of plan irregular (C, T, I shaped irregular building and regular building) tall building subjected to the seismic load alongwith the importance of infill wall is considered. The modeling and analysis of (G+14) storey structure for seismic zone (III), soil type (II) with importance factor (1) and M20 grade concrete are carried out, by equivalent static and response spectrum method, as per IS 1893-2016(Part-1), using E-tabs 2015 commercially available software.. The results obtained are discussed in terms of base shear, storey displacement and storey drift. Many critical observations are drawn from the analysis. From these critical observations, it is concluded that, in almost all shape of plan irregular tall buildings, storey displacement and storey drift are found to be more in bare frame when compared with infill frame, whereas the base shear will be less in bare frame compared with infill frame. However, the results obtained amongst the different shapes, indicates that C, I and regular shaped tall building are yielding lesser storey displacement and storey drift compared to T shaped building. Presence of infill walls will increase the stiffness of the frame.


2021 ◽  
pp. 107754632110075
Author(s):  
Junling Chen ◽  
Jinwei Li ◽  
Dawei Wang ◽  
Youquan Feng

The steel–concrete hybrid wind turbine tower is characterized by the concrete tubular segment at the lower part and the traditional steel tubular segment at the upper part. Because of the great change of mass and stiffness along the height of the tower at the connection of steel segment and concrete segment, its dynamic responses under seismic ground motions are significantly different from those of the traditional steel tubular wind turbine tower. Two detailed finite element models of a full steel tubular tower and a steel–concrete hybrid tower for 2.0 MW wind turbine built in the same wind farm are, respectively, developed by using the finite element software ABAQUS. The response spectrum method is applied to analyze the seismic action effects of these two towers under three different ground types. Three groups of ground motions corresponding to three ground types are used to analyze the dynamic response of the steel–concrete hybrid tower by the nonlinear time history method. The numerical results show that the seismic action effect by the response spectrum method is lower than those by the nonlinear time history method. And then it can be concluded that the response spectrum method is not suitable for calculating the seismic action effects of the steel–concrete hybrid tower directly and the time history analyses should be a necessary supplement for its seismic design. The first three modes have obvious contributions on the dynamic response of the steel–concrete hybrid tower.


2020 ◽  
Vol 156 ◽  
pp. 05026
Author(s):  
Fauzan ◽  
Afdhalul Ihsan ◽  
Mutia Putri Monika ◽  
Zev Al Jauhari

The amount of potential investment in Padang City, Indonesia since 2017 attracted many investors to contribute to the city. One of the investments is a 12-story hotel that will be constructed in By Pass Street of the city. The hotel is located in a high seismic zone area, so the seismic base isolation has been proposed to be used in the hotel building. The main aim of using a seismic base isolation device is to reduce the inertia forces introduced in the structure due to earthquakes by shifting the fundamental period of the structure out of dangerous resonance range and concentration of the deformation demand at the isolation system. An analytical study on the Reinforced Concrete (RC) hotel building with and without rubber bearing (RB) base isolation is carried out using the response spectrum and time history analysis methods. The results show that internal forces and inter-story drift of the building with high damping rubber bearing (HDRB) are lower than that of the fixed base with a remarkable margin. From this study, it is recommended to use the HDRB base isolation for medium and high rise buildings with soft soil in Padang City, Indonesia.


Author(s):  
Ashutosh Shrivastava ◽  
Rajesh Chaturvedi

Nowadays, as in the urban areas the space available for the construction of buildings is limited. So in limited space we have to construct such type of buildings which can be used for multiple purposes such as lobbies, car parking etc. To fulfill this demand, high rise buildings is the only option available. The performance of a high rise building during strong earthquake motion depends on the distribution of stiffness, strength and mass along both the vertical and horizontal directions. If there is discontinuity in stiffness, strength and mass between adjoining storeys of a building then such a building is known as irregular building. The present study focuses on the seismic performance of regular and vertical irregular building with and without masonary infills. In the present study G+11 building is considered for the analysis with modelling and analysis done on ETABS software v17.0.1. The earthquake forces are calculated as per IS 1893 (part 1): 2016 for seismic zone III. The width of strut is calculated by using equivalent diagonal strut method. Total five models are considered for the analysis i.e. regular building with bare frame, regular building with masonary infill, soft storey building with open ground storey, mass irregular building with masonary infill and vertical geometric irregular building with masonary infill. The non-linear static analysis (pushover analysis) and linear dynamic analysis (response spectrum analysis) are performed for all the models and thereby compare their results. From analysis, the parameters like performance point, time period, maximum storey displacement, maximum storey drifts, storey shears and overturning moments are determined and also comparative study is done for all the models. From the comparison, it is observed that the vertical geometric irregular building shows better performance under seismic loading and bare frame building shows inferior performance. Moreover, the performance of masonary infilled frame building is f


Author(s):  
Ankit Kumar

Abstract: This study examines the composite structure that is increasing commonly in developing countries. For medium-rise to high-rise building construction, RCC structures is no longer economical due to heavy dead weight, limited span, low natural frequency and hazardous formwork. The majority of commercial buildings are designed and constructed with reinforced concrete, which largely depends on the existence of the constituent materials as well as the quality of the necessary construction skills, and including the usefulness of design standards. Conventional RCC structure is not preferred nowadays for high rise structure. However, composite construction, is a recent development in the construction industry. Concrete-steel composite structures are now very popular due to some outstanding advantages over conventional concrete and steel structures. In the present work, RCC and steel-concrete composite structure are being considered for a Dynamic analysis of a G+25-storey commercial building of uniform and optimized section, located at in seismic zone IV. Response Spectrum analysis method is used to analyze RCC and composite structure, CSI ETABS v19 software is used and various results are compared such as time period, maximum storey displacement, maximum storey stiffness. Maximum storey shear and maximum stoey overturning moment. Keywords: RCC Structure, Composite Structure, Uniform Section, Optimized Section, Shear Connector, Time Period, Storey Displacement, Storey Shear, Storey Stiffness, Response Spectrum method, ETABS


Sign in / Sign up

Export Citation Format

Share Document