scholarly journals Variations of Soil Properties on Post Shifting Cultivation area in Primary Forest

2021 ◽  
Vol 305 ◽  
pp. 04004
Author(s):  
Malihatun Nufus ◽  
Budiadi ◽  
Widiyatno

Shifting cultivation in tropical forest was presumed as the major cause of soil degradation and soil nutrient depletion, and need several years--namely forest-fallow periods-- to be recovered. Soil properties dynamic monitoring has been done in the tropical forest in Central Kalimantan at one, five and ten year after abandonment, and compared to primary forest, to predict the time for soil recovery in term of Calcium (Ca), Magnesium (Mg), Potassium (K), Natrium (Na) content and cation exchange capacity (CEC). The soil properties status can be beneficial for rehabilitation activities through practicing agroforestry by the forest dwellers. The results showed that soil properties (i.e. Ca, Mg, K, CEC) were significantly different among soil depth (P<0.05), but not for Na. Highest value of Ca, Mg, K and Na were observed in the soil surface (0-20 cm), Soil nutrient contents were significantly changed with the time of abandonment, the highest value of CEC, Ca, K, and pH were found in five years after the abandonment. It suggested that soil nutrients were distributed in the soil surface composed from litter of pioneer trees. The research suggested that soil recovery was probably occurred during early fallows, and agroforestry can be practiced at five year after the abandonment.

Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Hadi Sohrabi ◽  
Meghdad Jourgholami ◽  
Mohammad Jafari ◽  
Farzam Tavankar ◽  
Rachele Venanzi ◽  
...  

Soil damage caused by logging operations conducted to obtain and maximize economic benefits has been established as having long-term effects on forest soil quality and productivity. However, a comprehensive study of the impact of logging operations on earthworms as a criterion for soil recovery has never been conducted in the Hyrcanian forests of Iran. The aim of this study was to determine the changes in soil biological properties (earthworm density and biomass) and its recovery process under the influence of traffic intensity, slope and soil depth in various intervals according to age after logging operations. Soil properties were compared among abandoned skid trails with different ages (i.e., 3, 10, 20, and 25 years) and an undisturbed area. The results showed that earthworm density and biomass in the high traffic intensity and slope class of 20–30% at the 10–20 cm depth of the soil had the lowest value compared to the other treatments. Twenty-five years after the logging operations, the earthworm density at soil depth of 0–10 and 10–20 cm was 28.4% (0.48 ind. m−2) and 38.6% (0.35 ind. m−2), which were less than those of the undisturbed area, respectively. Meanwhile, the earthworm biomass at a soil depth of 0–10 and 10–20 cm was 30.5% (2.05 mg m−2) and 40.5% (1.54 mg m−2) less than the values of the undisturbed area, respectively. The earthworm density and biomass were positively correlated with total porosity, organic carbon and nitrogen content, while negatively correlated with soil bulk density and C/N ratio. According to the results, 25 years after logging operations, the earthworm density and biomass on the skid trails were recovered, but they were significantly different with the undisturbed area. Therefore, full recovery of soil biological properties (i.e., earthworm density and biomass) takes more than 25 years. The conclusions of our study reveal that the effects of logging operations on soil properties are of great significance, and our understanding of the mechanism of soil change and recovery demand that harvesting operations be extensively and properly implemented.


2019 ◽  
Vol 49 (7) ◽  
pp. 731-742 ◽  
Author(s):  
Lucas E. Nave ◽  
James M. Le Moine ◽  
Christopher M. Gough ◽  
Knute J. Nadelhoffer

What are the successional trajectories and impacts of disturbances on forest soil nutrient availability? Answers remain elusive because the time scale of interest is long and many factors affect soil properties. We address this question on a regionally representative landscape in northern Michigan, U.S.A. Late-successional reference stands aside, most forests on this landscape were clearcut and burned between 1870 and 1911; subsequently, stands comprising two chronosequences were either cut and burned again, or cut only, at multidecadal intervals. Influences of disturbance and succession were detectable in A, B, and C horizons, particularly for properties affected by ash deposition: pH, Ca, and Mg declined with age but were higher in twice-burned stands. A horizon NH4+ was lower in twice-burned than once-burned stands and declined with age in both chronosequences. B horizon Fe increased with age in both chronosequences but remained lower in twice-burned stands, suggesting slower recovery of pedogenesis following more severe disturbance. Contrasted against A and B horizons, where soil properties were driven by disturbance and succession, textural influences were evident in C horizons through variation in Ca, Mg, K, Al, and cation exchange capacity. Collectively, these results indicate deep, long-lasting disturbance impacts and a bottom-up influence of parent material at the landscape level.


2020 ◽  
pp. 34-40
Author(s):  
A. Ali ◽  
M. Usman ◽  
M. G. Nangere

This study was carried out at three different locations in Yobe State (North Eastern Nigeria), to determine the effect of cattle trampling on soil properties and sorghum productivity. The study locations were Potiskum, Nangere and Fika Local Government Areas of the state. Soil depth (25-30 cm height and diameter) were collected from each location and analyzed for particle size distribution, pH, organic carbon (OC), total nitrogen (TN), available phosphorus and exchangeable cations as well as cation exchange capacity (CEC), bulk density (BD), total porosity (Pt) and saturated hydraulic conductivity (Ksat). Each sampling involved collection from cattle trampled and un-trampled areas with sorghum as the test crop. Effect of trampling on root mass, length and stover yields were also determined after sorghum cultivation in each of the location. Results indicated that there were significant effects of cattle trampling with respect to soil properties investigated. However, post planting results of the analysis revealed that trampled soils had significantly lower statistical values for all yield parameters of sorghum when compared with un-trampled soils in all the study locations. There is need to improve the structure of soils in all study locations through incorporation of organic matter and proper soil management for increased permeability, root penetration, aeration and water infiltration. Also, there is need for cattle routes demarcations to provide free movement of livestock across the locations without encroachment into farmlands.


2020 ◽  
Vol 8 (1) ◽  
pp. 19-25
Author(s):  
Omar Nurcholis ◽  
Syahrul Kurniawan

Fire is a serious problem that must be faced in the management of forest or plantation areas. Land fires have caused huge losses of soil nutrient. Lampung is one of the provinces in Indonesia having a problem related to land fires. The purpose of this study was to analyze the impact of land fires on the soil base cations (K, Mg, Ca, Na) and cation exchange capacity (CEC) in three different planting zones (i.e. fertilization, harvesting path, and frond stack areas) within oil palm plantations between land with low fire intensity and land with high fire intensity. Observations were made using a survey method in three zones of oil palm plantations, including fertilization area, harvesting path, and frond stack area. Soil samples were collected by using a soil drill at two depths, namely 0-10 cm and 10-30 cm from the soil surface. The study showed that at depth 0-10 cm, land A (land with low fire intensity) had higher K, Na, and Ca contents, as well as higher CEC as compared to land B (land with high fire intensity). At depth 10-30 cm, field A had higher K and CEC content, and lower Mg content than land B. comparing among different zones of oil palm plantations also showed that soil exchangeable K and Mg were significantly different, especially at depths of 10-30 cm. This was due to differences in land management (i.e. fertilization and liming).


2014 ◽  
Vol 38 (1) ◽  
pp. 315-326 ◽  
Author(s):  
José Maria Barbat Parfitt ◽  
Luís Carlos Timm ◽  
Klaus Reichardt ◽  
Eloy Antonio Pauletto

The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd) and bulk density (Bd); total porosity (Tp), macroporosity (Macro) and microporosity (Micro); available water capacity (AWC); sand, silt, clay, and dispersed clay in water (Disp clay) contents; electrical conductivity (EC); and weighted average diameter of aggregates (WAD). Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all soil physical properties changed as a result of leveling and its effect on all soil physical properties occurred in the whole area and not specifically in the cutting or filling areas. In future designs of leveling, we recommend overlaying a cut/fill map on the map of soil depth to the top of the B horizon in order to minimize areas with shallow surface soil after leveling.


1971 ◽  
Vol 2 (2) ◽  
pp. 79-92 ◽  
Author(s):  
K. J. KRISTENSEN ◽  
H. C. ASLYNG

The lysimeter installation described comprises 36 concrete tanks each with a soil surface of 4 m2. The installation is useful for plant growth experiments under natural conditions involving different treatment combined with various controlled water supplies. The ground installation is at least 20 cm below the soil surface and tillage can be done with field implements. The lysimeter tanks are provided with a drainage system which can drain the soil at the bottom (100 cm depth) to a tension of up to 100 cm. A constant ground-water table at less than 100 cm soil depth can also be maintained. The soil moisture content at different depths is determined from an underground tunnel by use of gamma radiation equipment in metal tubes horizontally installed in the soil. Rainfall is prevented by a movable glass roof automatically operated and controlled by a special rain sensor. Water is applied to the soil surface with a special trickle irrigation system consisting of a set of plastic tubes for each lysimeter tank and controlled from the tunnel. Fertilizers in controlled amount can be applied with the irrigation water.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 666
Author(s):  
Guilin Han ◽  
Anton Eisenhauer ◽  
Jie Zeng ◽  
Man Liu

In order to better constrain calcium cycling in natural soil and in soil used for agriculture, we present the δ44/40Ca values measured in rainwater, groundwater, plants, soil, and bedrock samples from a representative karst forest in SW China. The δ44/40Ca values are found to differ by ≈3.0‰ in the karst forest ecosystem. The Ca isotope compositions and Ca contents of groundwater, rainwater, and bedrock suggest that the Ca of groundwater primarily originates from rainwater and bedrock. The δ44/40Ca values of plants are lower than that of soils, indicating the preferential uptake of light Ca isotopes by plants. The distribution of δ44/40Ca values in the soil profiles (increasing with soil depth) suggests that the recycling of crop-litter abundant with lighter Ca isotope has potential effects on soil Ca isotope composition. The soil Mg/Ca content ratio probably reflects the preferential plant uptake of Ca over Mg and the difference in soil maturity. Light Ca isotopes are more abundant in mature soils than nutrient-depleted soils. The relative abundance in the light Ca isotope (40Ca) is in the following order: farmland > burnt grassland > forests > grassland > shrubland. Our results further indicate that biological fractionation in a soil–plant system is a vital factor for Ca–geochemical transformations in soil surface systems.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Meghdad Jourgholami ◽  
Azadeh Khoramizadeh ◽  
Angela Lo Monaco ◽  
Rachele Venanzi ◽  
Francesco Latterini ◽  
...  

Engineering applications can be used to mitigate the adverse effects of soil compaction and amend compacted soils. Previous literature has highlighted the beneficial effects of interventions such as litter mulching and incorporation on skid trails. However, little is known about the effectiveness of these alternatives in restoring forest soil quality after forest logging. The objective of this study was to properly elucidate the effects of the above mentioned soil protection methods, litter incorporation before skidding (LI) and litter mulching after skidding (LM), on the recovery of compacted soil’s physico-chemical and biological properties on skid trails over a 2-year period in the Hyrcanian forests of Iran to identify the best option for restoration intervention. The litter used in both methods consisted of dried leaves of the hornbeam and maple tree in three intensities of 3, 6, and 9 Mg ha−1. The results showed that the application of both methods (LI and LM) significantly improved the soil properties when compared to the untreated skid trail. Results showed that the recovery values of soil properties in the LI treatments were significantly higher than those of the LM. The recovery values of soil properties by 6 and 9 Mg ha−1 were significantly higher than those of 3 Mg ha−1, while the differences were not significant between 6 and 9 Mg ha−1. Our findings showed that soil properties were partially recovered (70–80%) over a 2-year period from treatment, compared to untreated, but the full recovery of soil properties required more time to return to the pre-harvest value. Overall, the results of this study demonstrated that the application of soil protection methods accelerates the process of recovering soil properties much faster than natural soil recovery, which can take more than 20 years in these forests.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Husrev Mennan ◽  
Mathieu Ngouajio

Catchweed bedstraw and wild mustard each produce two populations per year: a winter population (WP) in June, and a summer population (SP) in September. Experiments were conducted to determine whether the WP and SP differ in seed mass and seasonal germination. Seeds of both weeds were buried at 0, 5, 10, and 20 cm in cultivated fields, and retrieved at monthly intervals for 24 mo for germination tests in the laboratory. Additionally, seedling emergence from seeds buried at 0, 5, and 10 cm in the field was evaluated for 1 yr. Seeds from the WP were heavier than those from the SP for both species. Germination of exhumed seeds was affected by burial depth and by seed population. It was highest for seeds that remained on the soil surface and declined with increasing depth of burial. The WP of catchweed bedstraw produced two germination peaks per year, whereas the SP and all populations of wild mustard had only one peak. The WP of both weeds germinated earlier than the SP. Seedling emergence for both species in the field was greater for the WP than for the SP. Increasing soil depth reduced seedling emergence of both the WP and SP of wild mustard and affected only the WP of catchweed bedstraw. We conclude that the WP and SP of catchweed bedstraw and wild mustard seeds used in this study differed in seed mass, seasonal germination, and seedling emergence. The ability of a WP to produce large seeds that germinate early and have two germination peaks per year could make these populations a serious problem in cropping systems.


Sign in / Sign up

Export Citation Format

Share Document