scholarly journals Study of Cattle Trampling and Its Effect on Soil Properties and Sorghum Productivity in Parts of Yobe State, Nigeria

2020 ◽  
pp. 34-40
Author(s):  
A. Ali ◽  
M. Usman ◽  
M. G. Nangere

This study was carried out at three different locations in Yobe State (North Eastern Nigeria), to determine the effect of cattle trampling on soil properties and sorghum productivity. The study locations were Potiskum, Nangere and Fika Local Government Areas of the state. Soil depth (25-30 cm height and diameter) were collected from each location and analyzed for particle size distribution, pH, organic carbon (OC), total nitrogen (TN), available phosphorus and exchangeable cations as well as cation exchange capacity (CEC), bulk density (BD), total porosity (Pt) and saturated hydraulic conductivity (Ksat). Each sampling involved collection from cattle trampled and un-trampled areas with sorghum as the test crop. Effect of trampling on root mass, length and stover yields were also determined after sorghum cultivation in each of the location. Results indicated that there were significant effects of cattle trampling with respect to soil properties investigated. However, post planting results of the analysis revealed that trampled soils had significantly lower statistical values for all yield parameters of sorghum when compared with un-trampled soils in all the study locations. There is need to improve the structure of soils in all study locations through incorporation of organic matter and proper soil management for increased permeability, root penetration, aeration and water infiltration. Also, there is need for cattle routes demarcations to provide free movement of livestock across the locations without encroachment into farmlands.

1963 ◽  
Vol 39 (4) ◽  
pp. 412-421 ◽  
Author(s):  
George W. Scotter

The effects of forest fires on some physical and chemical soil properties in the Black Lake region of northern Saskatchewan were determined on four burned-over areas, and results were compared with corresponding mature forested areas. Formerly, two of the burns supported jack pine forests and the other two supported black spruce forests.Temperatures, water infiltration rates, and erosion were the physical soil properties considered. Temperatures at the 1-inch and 3-inch depths in the burned-over soils averaged 10.5 F and 9.7 F respectively, higher than soil temperatures under mature forests. Water infiltration rates, compared at one location only, were not impaired. Erosion following fire was slight.Soil nutrients and soil pH were the chemical properties considered. Total exchange capacity decreased on three of the four burns, when compared with mature forests. Exchangeable hydrogen was reduced and available phosphorus increased on each of the burned-over soils. Exchangeable calcium increased on three of the four burned-over soils. No conclusions could be reached for alterations in total nitrogen, exchangeable magnesium, potassium, and sodium. On the burned-over areas acidity decreased at 1-inch depths and 3-inch depths.Forest fire influence both chemical and physical soil properties on the winter range of barren-ground caribou in northern Saskatchewan. These alterations may be important in changing the habitat to one less favorable for the germination and growth of preferred food plants.


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


2016 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Nahusenay Abate ◽  
Kibebew Kibret

The study was conducted to investigate the effects of land use, depth and topography on soil physicochemical properties at the Wadla Delanta Massif, northcentral Ethiopia. Four land uses (natural forest, shrub, grazing and cultivated land), three soil depths (0-20, 20-40, 40-60 cm) and three topographic positions (upper, middle and lower) in three replications were considered for this study. A total of 108 composite samples were collected for laboratory analysis. The results show that particle size distribution was affected by the main effects of land use and soil depth; bulk and particle densities, total porosity, organic matter and total nitrogen contents, C:N ratio and available phosphorus were significantly affected by the interaction of land use by soil depth only, whereas, soil pH, electrical conductivity, exchangeable bases, cation exchange capacity, percent base saturation and extractable micronutrients were affected by the interaction effects of the three factors. Highest clay and bulk density were recorded at the bottom layer of the cultivated land soils, while the utmost porosity, organic matter and nitrogen contents, and available phosphorus were recorded at the surface layers of the natural forest land soils. Highest pH was at the bottom layer of the cultivated land at the three topographic positions. Highest exchangeable bases and cation exchange capacity were observed in the bottom layers of soils under the four land use types at the lower topographic position, whilst extractable micronutrients were recorded at the surface layers of the forest land soils at the upper topographic position. In general, most of the measured soil properties were measured better in forest than in other land use soils and the lower topographic positions than the upper and middle ones. Interaction of land use with topography showed negative effects especially on cultivated and grazing land soils in all topographic positions. Therefore, integrated soil fertility management and soil conservation measures are required in all topographic positions to maintain soil physicochemical properties.


2015 ◽  
Vol 51 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Wenmei Ma ◽  
Xingchang Zhang ◽  
Qing Zhen ◽  
Yanjiang Zhang

The infiltration of water and its influencing factors in disturbed or reclaimed land are not well understood. A better understanding would provide essential information for assessing the hydrological processes in disturbed ecosystems. We measured the infiltration of water in soils from loamy and sandy reclaimed land. The relationships between infiltration and soil properties were analyzed based on three models: the Kostiakov, Philip, and Green–Ampt equations. Our objectives were to understand water infiltration in reclaimed land with a variety of soil textures and to establish the dependence of water infiltration on soil properties. Both the rate of infiltration and the cumulative infiltration were higher in sandy than in loamy soils. The rate of infiltration and the cumulative infiltration decreased with soil depth in undisturbed land. The sorptivity rate (S) from the Philip equation, empirical coefficient (K) from the Kostiakov equation, and the satiated hydraulic conductivity (Ksl) from the Green–Ampt equation were 22%, 16%, and 7.1% higher, respectively, in sandy than in loamy soils. The Ksl increased significantly with Ks (saturated hydraulic conductivity) in both sandy and loamy soils. These indicated that the Green–Ampt equation can be used to describe Ks and the characteristics of infiltration for soils on disturbed land.


Author(s):  
Utin U. E ◽  
Essien G. E

A study was conducted to determine the effects of slope position and fertilizer type on soil properties and growth of maize (Zea mays) on Coastal Plain Sands of Akwa Ibom State, Nigeria. Results obtained showed that soils of lower slope (LS) had the highest contents of clay and silt compared with those of upper slope (US) position. Bulk density of the upper slope soil and that of the middle slope (MS) soils were significantly higher (P≤0.05) than that of LS soil and subsequently, total porosity and saturated hydraulic conductivity (Ksat) increased downslope. Bulk density of soils that received poultry manure (PM) and NPK+PM were significantly reduced compared to those of NPK and control while total porosity and Ksat of soils that received PM and NPK+PM were significantly higher (P≤0.05) than those of NPK and control. Soils of LS had highest pH, organic carbon, total nitrogen, available phosphorus, ECEC compared to those of MS and US. The application of poultry manure yielded increase in soil pH, soil organic carbon, total nitrogen, available phosphorus and ECEC when compared to soils of NPK and control. Growth of maize obtained with LS were consistently higher than those of the MS and US soils. Soils of LS that received NPK and NPK+PM had consistently similar maize growth, higher than other combinations of slope position and fertilizer type. The complementary application of poultry manure and NPK 15:15:15 can be the best option for increasing the fertility of soils with varying slope positions on Coastal Plain Sands.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 48 ◽  
Author(s):  
Jishi Zhang ◽  
Xilong Jiang ◽  
Qi Miao ◽  
Botao Yu ◽  
Liming Xu ◽  
...  

Certain minerals possess structures that convey properties which improve soil quality; however, their application in coastal saline areas has been poorly studied. In this study, we explored the effects of combining mineral amendments on the improvement of wheat yield and soil properties in a two-year field experiment in mildly saline coastal soil areas of the Yellow River Delta, China. Five mineral materials were combined into the following four treatments: zeolite + rock phosphate (ZP), zeolite + silica calcium soil conditioner (ZC), vermiculite + rock phosphate (VP), and vermiculite + medical stone (VS). For all treatments, combined mineral amendments increased wheat yield compared to the control, with similar increases in yield following treatment with VP (45.7%), ZP (43.5%), and ZC (43.6%), and a significantly smaller increase following VS treatment (26.3%). These increases in grain yield were attributed to larger dry matter accumulation and higher grain numbers per ha. Compared to the control, ZP and ZC application substantially reduced soluble magnesium (Mg) and sodium (Na) contents, electrical conductivity (EC), and sodium adsorption ratio (SAR), and increased soil organic carbon (SOC) at a soil depth of 0–20 cm. VP application increased soil available phosphorus (P) by 34.7% and soluble potassium (K) by 69.3% at a soil depth of 0–20 cm. VS application slightly increased the SOC, total nitrogen (N), available P, and soluble K compared to the control. Overall, these results indicate that combining mineral amendments significantly increases wheat yield and improves soil properties in a saline area. Thus, we recommend the use of mineral amendments in saline coastal areas.


2016 ◽  
Vol 96 (4) ◽  
pp. 472-484 ◽  
Author(s):  
J.A. Surani Chathurika ◽  
Darshani Kumaragamage ◽  
Francis Zvomuya ◽  
Olalekan O. Akinremi ◽  
Donald N. Flaten ◽  
...  

Fertility enhancement with biochar application is well documented for tropical acidic soils; however, benefits of biochar coapplied with synthetic fertilizers (SFs) on soil fertility are not well documented, particularly for alkaline chernozems. We examined the short-term interactive effects of woodchip biochar amendment with fertilizers on selected soil properties, available phosphorus (P), and P fractions of two alkaline Chernozems from Manitoba. Treatments were (1) urea and monoammonium phosphate fertilizers, (2) biochar at 10 g kg−1, (3) biochar at 20 g kg−1, (4) biochar at 10 g kg−1with fertilizers, (5) biochar at 20 g kg−1with fertilizers, and (6) a control. Treated soils were analysed for pH, electrical conductivity (EC), and Olsen P concentration biweekly, and for P fractions, cation exchange capacity (CEC), organic carbon (OC), and wet aggregate stability after 70 d of incubation. Biochar amendment without fertilizers significantly increased soil pH and CEC but had no effect on EC, while coapplication with fertilizers significantly increased Olsen P and labile P concentrations. When coapplied with fertilizers, biochar did not significantly increase soil pH relative to the control. Results suggest that biochar improved soil properties and available P in alkaline Chernozems, and the beneficial effects were enhanced when coapplied with SFs.


2021 ◽  
Vol 13 (10) ◽  
pp. 5332
Author(s):  
Dianpeng Li ◽  
Jianqin Zhou ◽  
Yuxin Zhang ◽  
Tao Sun ◽  
Shuqing An ◽  
...  

In arid regions, decreased soil fertility has adversely affected agricultural sustainability. The effects of different amendments in alleviating these issues and increasing soil fertility remain unclear. Herein, a two-year field experiment was conducted to evaluate the properties of grey desert soil and soil respiration (SR) dynamics under six different treatment groups: biochar (BC), leonardite (LD), anionic polyacrylamide (PAM−), cationic polyacrylamide (PAM+) powder, anionic polyacrylamide solution in water (PAM−W), and control (CK). We observed that the BC and LD amendments significantly altered soil pH, organic matter, available nitrogen, available phosphorus, cation exchange capacity, and SR. PAM amendment increased the SR as compared to the control, except in autumn, but PAM did not affect the soil properties. SR under different amendments showed strong seasonal patterns, the highest and lowest SR rates were observed in June and January, respectively. Amendments and seasonal dynamics significantly affected SR, but no interaction was observed between these factors. Temporal variation of SR was substantially influenced by soil temperature at 15 cm of soil depth. Temperature sensitivity of SR (Q10) increased with soil depth and decreased with amendment addition. SR was significantly affected by soil temperature, moisture, air temperature, and their interactions. The outcomes of this study suggested that the BC and LD amendments improved soil fertility and negated the net carbon accumulation by increasing the SR and Q10 in arid agriculture soil.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Francesca Vannucchi ◽  
Valerio Lazzeri ◽  
Irene Rosellini ◽  
Manuele Scatena ◽  
Claudia Caudai ◽  
...  

Hay meadows are secondary grasslands maintained by mowing, and their ecological importance resides in the inherent biodiversity and carbon stocking. We investigated the plant community and soil properties of a sub humid acid grassland near the Fucecchio marshes (Italy), managed as a hay meadow, mowed once a year, and not fertilized. Part of the meadow had been abandoned for three years. We analysed the soil properties (i.e., organic carbon and total nitrogen content, available phosphorus, pH, cation-exchange capacity, texture, and conductibility) and the plant community structure (composition, functionality, and species richness) of the two sides of the meadow (mowed and abandoned). Our aim was to highlight the changes in soil properties and vegetation community, and to find out to what extent abandonment can affect those dynamics. Our results showed that after short-term abandonment, soil pH, C and N increased; litter biomass and perennial forbs increased; and annual forbs decreased. New species colonising after abandonment, thus enriching the flora, may keep spreading and eventually hinder the growth of the specialists if mowing is not resumed. Certain valuable meadow habitats need constant human intervention to maintain their peculiar vegetation, most especially if they are a buffer zone in the proximity of natural protected areas.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1032B-1032
Author(s):  
Hyun-Sug Choi ◽  
Curt R. Rom ◽  
Mengmeng Gu ◽  
Jason McAfee

Seasonal variations of nutrient concentrations in soil and apple leaves, soil properties, weed density, and tree performance were observed for response to four groundcover managements systems: 1) mowed control; 2) plastic woven landscape fabric; 3) wood chip mulch; and 4) shredded commercial paper mulch. Soil sampled below the wood chip and shredded paper mulch treatments had higher NO3-N concentrations during the season. Soil below the shredded paper mulch had greater soil Ca, Na, and Zn than other treatments. Soil sampled below wood chip mulch had higher Mg and B. Leaf K was greater for trees grown with bark chip mulch than the other treatments. Overall, the seasonal patterns of N, P, and K decreased and had similar patterns as previously reported conventionally grown orchards. The leaf Ca and Mg increased during the season for all treatments. The concentration of other microelements had patterns similar among all treatments. Seasonal soil pH decreased during the season and was affected by treatments. During the season, water infiltration was faster into the soil covered with shredded paper mulch. The organic matter was greater in soil under the wood chip mulch at the 15-cm soil depth. Very little weed invasion occurred in the landscape fabric through August. Trees grown with shredded paper and wood chip mulch treatments had greater trunk cross-sectional area compared to trees grown under landscape fabric after 5 years; however, the latter treatment resulted in greater tree height, tree canopy spread, and fruit yield.


Sign in / Sign up

Export Citation Format

Share Document