scholarly journals Modeling the motion of a Taylor bubble in a microchannel through a shear-thinning fluid

2021 ◽  
Vol 312 ◽  
pp. 05006
Author(s):  
Andrea Aquino ◽  
Davide Picchi ◽  
Pietro Poesio

Applications of multiphase flows in microchannels as chemical and biological reactors and cooling systems for microelectronic devices typically present liquid slugs alternated with bubbles of elongated shape, the Taylor bubbles. These occupy almost entirely the cross-section of the channel and present a hemispherical front and a liquid layer, the lubrication film, which separates the gas from the tube wall. The Taylor bubble perturbs the surrounding fluids activating many transport mechanisms in the proximity of the gas-liquid interface; therefore, the bubble motion significantly influences the heat and mass transfer rates. Although many works deeply investigate the bubble hydrodynamics in Newtonian fluids, the knowledge about the relation between bubble hydrodynamics and rheological properties is insufficient, and studies where the continuous phase exhibits a shear-thinning behavior are missing. Our numerical analysis tries to fill this gap by investigating the motion of a Taylor bubble in a non-Newtonian shear-thinning fluid, modeled by the Carreau viscosity model. First, we validate the results against the Newtonian case and a recent theory for shear-thinning fluids (Picchi et al., Journal of Fluid Mechanics, 2021, 918). Then, we investigate the bubble hydrodynamics far from the validity range of the current models. Finally, we study the scaling of the bubble velocity and lubrication film thickness, extending the current theory to shear-thinning fluids.

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 335
Author(s):  
Anna Yagodnitsyna ◽  
Alexander Kovalev ◽  
Artur Bilsky

Immiscible liquid–liquid flows in microchannels are used extensively in various chemical and biological lab-on-a-chip systems when it is very important to predict the expected flow pattern for a variety of fluids and channel geometries. Commonly, biological and other complex liquids express non-Newtonian properties in a dispersed phase. Features and behavior of such systems are not clear to date. In this paper, immiscible liquid–liquid flow in a T-shaped microchannel was studied by means of high-speed visualization, with an aim to reveal the shear-thinning effect on the flow patterns and slug-flow features. Three shear-thinning and three Newtonian fluids were used as dispersed phases, while Newtonian castor oil was a continuous phase. For the first time, the influence of the non-Newtonian dispersed phase on the transition from segmented to continuous flow is shown and quantitatively described. Flow-pattern maps were constructed using nondimensional complex We0.4·Oh0.6 depicting similarity in the continuous-to-segmented flow transition line. Using available experimental data, the proposed nondimensional complex is shown to be effectively applied for flow-pattern map construction when the continuous phase exhibits non-Newtonian properties as well. The models to evaluate an effective dynamic viscosity of a shear-thinning fluid are discussed. The most appropriate model of average-shear-rate estimation based on bulk velocity was chosen and applied to evaluate an effective dynamic viscosity of a shear-thinning fluid. For a slug flow, it was found that in the case of shear-thinning dispersed phase at low flow rates of both phases, a jetting regime of slug formation was established, leading to a dramatic increase in slug length.


Author(s):  
Eleonora Bottani ◽  
Roberto Rizzo ◽  
Giuseppe Vignali

This research presents a model describing the behaviour of a non-Newtonian shear-thinning fluid during aseptic filling processes, in order to determine the influence of the behaviour of fluids on the performance of filling valves in aseptic beverage plants, mainly in terms of the time required to perform the filling process. The ultimate aim of the study is to explore the possibility of improving the accuracy of industrial filling processes, so as to be able to utilise them with high viscosity fluids.The numerical model, exploiting the Finite Elements Method (FEM), was designed using the commercial software Comsol Multiphysics, and validated by comparing the steady state predictions with outcomes of filling experiments performed in industrial laboratories. Hence, subsequent numerical simulations were performed to investigate the transition from laminar to turbulent flow for shear-thinning fluids under different pressure conditions, in 3D time-dependent configurations. Results of the simulations, performed on a low fat yoghurt, show that laminar flow subsists within the whole filling system when the Metzner-Reed Reynolds number at the inlet section of the valve is lower than approx 444.


2021 ◽  
Vol 933 ◽  
Author(s):  
S. Topayev ◽  
C. Nouar ◽  
J. Dusek

The stability of the Taylor vortex flow in Newtonian and shear-thinning fluids is investigated in the case of a wide gap Taylor–Couette system. The considered radius ratio is $\eta = R_1/R_2=0.4$ . The aspect ratio (length over the gap width) of experimental configuration is 32. Flow visualization and measurements of two-dimensional flow fields with particle image velocimetry are performed in a glycerol aqueous solution (Newtonian fluid) and in xanthan gum aqueous solutions (shear-thinning fluids). The experiments are accompanied by axisymmetric numerical simulations of Taylor–Couette flow in the same gap of a Newtonian and a purely viscous shear-thinning fluid described by the Carreau model. The experimentally observed critical Reynolds and wavenumbers at the onset of Taylor vortices are in very good agreement with that obtained from a linear theory assuming a purely viscous shear-thinning fluid and infinitely long cylinders. They are not affected by the viscoelasticity of the used fluids. For the Newtonian fluid, the Taylor vortex flow (TVF) regime is found to bifurcate into a wavy vortex flow with a high frequency and low amplitude of axial oscillations of the vortices at ${Re} = 5.28 \, {Re}_c$ . At ${Re} = 6.9 \, {Re}_c$ , the frequency of oscillations decreases and the amplitude increases abruptly. For the shear-thinning fluids the secondary instability conserves axisymmetry. The latter is characterized by an instability of the array of vortices leading to a continuous sequence of creation and merging of vortex pairs. Axisymmetric numerical simulations reproduce qualitatively very well the experimentally observed flow behaviour.


2015 ◽  
Vol 784 ◽  
Author(s):  
Charu Datt ◽  
Lailai Zhu ◽  
Gwynn J. Elfring ◽  
On Shun Pak

Many micro-organisms find themselves immersed in fluids displaying non-Newtonian rheological properties such as viscoelasticity and shear-thinning viscosity. The effects of viscoelasticity on swimming at low Reynolds numbers have already received considerable attention, but much less is known about swimming in shear-thinning fluids. A general understanding of the fundamental question of how shear-thinning rheology influences swimming still remains elusive. To probe this question further, we study a spherical squirmer in a shear-thinning fluid using a combination of asymptotic analysis and numerical simulations. Shear-thinning rheology is found to affect a squirming swimmer in non-trivial and surprising ways; we predict and show instances of both faster and slower swimming depending on the surface actuation of the squirmer. We also illustrate that while a drag and thrust decomposition can provide insights into swimming in Newtonian fluids, extending this intuition to problems in complex media can prove problematic.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 916
Author(s):  
Mehmet Ayas ◽  
Jan Skocilas ◽  
Tomas Jirout

In this work, the power draw and shear profile of a novel in-line rotor-stator mixer were studied experimentally and the laminar flow regime was simulated. The power draw of the rotor-stator mixer was investigated experimentally using viscoplastic shear-thinning fluid and the results of the obtained power consumptions were verified through simulations. The power draw constant and Otto-Metzner coefficient were determined from the result of experimental data and through simulations. A new method is suggested for the determination of the Otto-Metzner coefficient for the Herschel–Bulkley model and the term efficiency is introduced. It was shown that the proposed method can be applied successfully for the prediction of the Otto-Metzner coefficient for the mixing of viscoplastic shear-thinning fluids. The effect of geometry and rotor speed on power consumption and shear rate profile in the investigated mixer is discussed from the results of the simulations. It was found that numerical methods are a convenient tool and can predict the power draw of the in-line rotor-stator mixer successfully.


1995 ◽  
Vol 6 (6) ◽  
pp. 559-571 ◽  
Author(s):  
M. E. Brewster ◽  
S. J. Chapman ◽  
A. D. Fitt ◽  
C. P. Please

The incompressible slow viscous flow of a power-law shear-thinning fluid in a wedge-shaped region is considered in the specific instance where the stress is a very small power of the strain rate. Asymptotic analysis is used to determine the structure of similarity solutions. The flow is shown to possess an outer region with boundary layers at the walls. The boundary layers have an intricate structure consisting of a transition layer 0(ɛ) adjoining an inner layer O(ɛlnɛ), which further adjoins an inner-inner layer 0(ɛ) next to the wall. Explicit solutions are found in all the regions and the existence of ‘dead zones’ in the flow is discussed.


2016 ◽  
Vol 800 ◽  
pp. 753-765 ◽  
Author(s):  
D. A. Gagnon ◽  
P. E. Arratia

Numerous natural processes are contingent on microorganisms’ ability to swim through fluids with non-Newtonian rheology. Here, we use the model organism Caenorhabditis elegans and tracking methods to experimentally investigate the dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation have proposed that the cost of swimming, or mechanical power, should be lower in a shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity. We aim to provide an experimental investigation into the cost of swimming in a shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer and (ii) the viscous dissipation rate of the flow field, which should yield equivalent results for a self-propelled low Reynolds number swimmer. We find the cost of swimming in shear-thinning fluids is less than or equal to the cost of swimming in Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming in shear-thinning fluids scales with a fluid’s effective viscosity and can be predicted using fluid rheology and simple swimming kinematics. Our results agree reasonably well with previous theoretical predictions and provide a framework for understanding the cost of swimming in generalized Newtonian fluids.


2020 ◽  
Vol 10 (5) ◽  
pp. 6172-6175 ◽  
Author(s):  
V. T. Phan

The squeeze flow behavior of a shear thinning fluid was studied in this paper using squeeze tack technique. The test material was firstly squeezed out between two parallel circular plates, then it was relaxed for 1.5min and finally was separated at a predefined pulling velocity. From the flow curves obtained in the squeeze tack experiments, the rheological parameters, including yield stress in tension and in squeeze, have been calculated. The results show that the squeeze-tack test can be used for the analysis and evaluation of shear thinning fluids. Although the experimental results may not be considered complete, it can be seen that the stresses and tensile stresses have a linear relationship witch goes through the origin.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 149
Author(s):  
Fan Bai ◽  
Hongna Zhang ◽  
Xiaobin Li ◽  
Fengchen Li ◽  
Sang Woo Joo

Droplets composed of two different materials, or Janus droplets, have diverse applications, including microfluidic digital laboratory systems, DNA chips, and self-assembly systems. A three-dimensional computational study of Janus droplet formation in a double Y-type microfluidic device filled with a shear-thinning fluid is performed by using the multiphaseInterDyMFoam solver of the OpenFOAM, based on a finite-volume method. The bi-phase volume-of-fluid method is adopted to track the interface with an adaptive dynamic mesh refinement for moving interfaces. The formation of Janus droplets in the shear-thinning fluid is characterized in five different states of tubbing, jetting, intermediate, dripping and unstable dripping in a multiphase microsystem under various flow conditions. The formation mechanism of Janus droplets is understood by analyzing the influencing factors, including the flow rates of the continuous phase and of the dispersed phase, surface tension, and non-Newtonian rheological parameters. Studies have found that the formation of the Janus droplets and their sizes are related to the flow rate at the inlet under low capillary numbers. The rheological parameters of shear-thinning fluid have a significant impact on the size of Janus droplets and their formation mechanism. As the apparent viscosity increases, the frequency of Janus droplet formation increases, while the droplet volume decreases. Compared with Newtonian fluid, the Janus droplet is more readily generated in shear-thinning fluid due to the interlay of diminishing viscous force, surface tension, and pressure drop.


Sign in / Sign up

Export Citation Format

Share Document