scholarly journals Experimental Investigation of Vortex Structures in Wake of Hyperboloid-Shaped Model by Means of 2D Particle Image Velocimetry Measurement

2018 ◽  
Vol 180 ◽  
pp. 02004
Author(s):  
V. Barraclough ◽  
J. Novotný ◽  
P. Šafařík

This paper deals with flow around a bluff body of hyperboloid shape. It consists of results gathered in the course of research by means of Particle Image Velocimetry (PIV). The experiments were carried out by means of low-frequency 2D PIV in a range of Reynolds numbers from 40000 to 50000. A hyperboloid-shaped model was measured in a wind tunnel with a modelled atmospheric boundary layer (and additionally, in a low-speed wind tunnel with low turbulence). The model was tested in a subcritical range of Reynolds numbers and various planes in a wake of the model were captured with the intention of getting an estimation of 3D flow structures. The tunnel with the modelled atmospheric boundary layer has a high rate of turbulence, so the influence of the turbulence of incoming flow on the wake could be outlined. The ratio of the height of the model to a thickness of the modelled boundary layer in the tunnel was 1/3, meaning the turbulence in the boundary layer strongly influenced the flow around the model; it suppresses the wake which leads to a lot shorter area of recirculation than low turbulence incoming flow would cause.

2014 ◽  
Vol 750 ◽  
pp. 73-98 ◽  
Author(s):  
L. Klotz ◽  
S. Goujon-Durand ◽  
J. Rokicki ◽  
J. E. Wesfreid

AbstractThe wake behind a cube with a face normal to the flow was investigated experimentally in a water tunnel using laser induced fluorescence (LIF) visualisation and particle image velocimetry (PIV) techniques. Measurements were carried out for moderate Reynolds numbers between 100 and 400 and in this range a sequence of two flow bifurcations was confirmed. Values for both onsets were determined in the framework of Landau’s instability model. The measured longitudinal vorticity was separated into three components corresponding to each of the identified regimes. It was shown that the vorticity associated with a basic flow regime originates from corners of the bluff body, in contrast to the two other contributions which are related to instability effects. The present experimental results are compared with numerical simulation carried out earlier by Saha (Phys. Fluids, vol. 16, 2004, pp. 1630–1646).


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2018 ◽  
Vol 15 (148) ◽  
pp. 20180441 ◽  
Author(s):  
Per Henningsson ◽  
Lasse Jakobsen ◽  
Anders Hedenström

In this study, we explicitly examine the aerodynamics of manoeuvring flight in animals. We studied brown long-eared bats flying in a wind tunnel while performing basic sideways manoeuvres. We used particle image velocimetry in combination with high-speed filming to link aerodynamics and kinematics to understand the mechanistic basis of manoeuvres. We predicted that the bats would primarily use the downstroke to generate the asymmetries for the manoeuvre since it has been shown previously that the majority of forces are generated during this phase of the wingbeat. We found instead that the bats more often used the upstroke than they used the downstroke for this. We also found that the bats used both drag/thrust-based and lift-based asymmetries to perform the manoeuvre and that they even frequently switch between these within the course of a manoeuvre. We conclude that the bats used three main modes: lift asymmetries during downstroke, thrust/drag asymmetries during downstroke and thrust/drag asymmetries during upstroke. For future studies, we hypothesize that lift asymmetries are used for fast turns and thrust/drag for slow turns and that the choice between up- and downstroke depends on the timing of when the bat needs to generate asymmetries.


2004 ◽  
Author(s):  
Meredith R. Martin

The transition from laminar to turbulent in-tube flow is studied in this paper. Water flow in a glass tube with an inside diameter of 21.7 mm was investigated by two methods. First, a dye visualization test using a setup similar to the 1883 experiment of Osborne Reynolds was conducted. For the dye visualization, Reynolds numbers ranging from approximately 1000 to 3500 were tested and the transition from laminar to turbulent flow was observed between Reynolds numbers of 2500 and 3500. For the second method, a particle image velocimetry (PIV) system was used to measure the velocity profiles of flow in the same glass tube at Reynolds numbers ranging from approximately 500 to 9000. The resulting velocity profiles were compared to theoretical laminar profiles and empirical turbulent power-law profiles. Good agreement was found between the lower Reynolds number flow and the laminar profile, and between the higher Reynolds number flow and turbulent power-law profile. In between the flow appeared to be in a transition region and deviated some between the two profiles.


Sign in / Sign up

Export Citation Format

Share Document