scholarly journals Software framework for the Super Charm-Tau factory detector project

2021 ◽  
Vol 251 ◽  
pp. 03017
Author(s):  
Maria Belozyorova ◽  
Dmitry Maksimov ◽  
Georgiy Razuvaev ◽  
Andrey Sukharev ◽  
Vitaly Vorobyev ◽  
...  

The project of Super Charm-Tau (SCT) factory — a high-luminosity electron-positron collider for studying charmed hadrons and tau lepton — is proposed by Budker INP. The project implies single collision point equipped with a universal particle detector. The Aurora software framework has been developed for the SCT detector. It is based on trusted and widely used in high energy physics software packages, such as Gaudi, Geant4, and ROOT. At the same time, new ideas and developments are employed, in particular the Aurora project benefits a lot from the turnkey software for future colliders (Key4HEP) initiative. This paper describes the first release of the Aurora framework, summarizes its core technologies, structure and roadmap for the near future.

2019 ◽  
Vol 214 ◽  
pp. 05026
Author(s):  
Jiaheng Zou ◽  
Tao Lin ◽  
Weidong Li ◽  
Xingtao Huang ◽  
Ziyan Deng ◽  
...  

SNiPER is a general purpose offline software framework for high energy physics experiment. It provides some features that are attractive to neutrino experiments, such as the event buffer. More than one events are available in the buffer according to a customizable time window, so that it is easy for users to apply events correlation analysis. We also implemented the MT-SNiPER to support multithreading computing based on Intel TBB. In MT-SNiPER, the event loop is split into pieces, and each piece is dispatched to a task. The global buffer, an extension and enhancement to the event buffer, is implemented for MT-SNiPER. The global buffer is available by all threads. It keeps all the events being processed in memory. When there is an available task, a subset of its events is dispatched to that task. There can be overlaps between the subsets in different tasks due to the time window. However, it is ensured that each event is processed only once. In the task side, the subsets of events are locally managed by a normal event buffer. So the global buffer can be transparent to most user algorithms. Within the global buffer, the multithreading computing of MT-SNiPER becomes more practicable.


2019 ◽  
Vol 214 ◽  
pp. 06037
Author(s):  
Moritz Kiehn ◽  
Sabrina Amrouche ◽  
Paolo Calafiura ◽  
Victor Estrade ◽  
Steven Farrell ◽  
...  

The High-Luminosity LHC (HL-LHC) is expected to reach unprecedented collision intensities, which in turn will greatly increase the complexity of tracking within the event reconstruction. To reach out to computer science specialists, a tracking machine learning challenge (TrackML) was set up on Kaggle by a team of ATLAS, CMS, and LHCb physicists tracking experts and computer scientists building on the experience of the successful Higgs Machine Learning challenge in 2014. A training dataset based on a simulation of a generic HL-LHC experiment tracker has been created, listing for each event the measured 3D points, and the list of 3D points associated to a true track.The participants to the challenge should find the tracks in the test dataset, which means building the list of 3D points belonging to each track.The emphasis is to expose innovative approaches, rather than hyper-optimising known approaches. A metric reflecting the accuracy of a model at finding the proper associations that matter most to physics analysis will allow to select good candidates to augment or replace existing algorithms.


2021 ◽  
pp. 405-421
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Neutrinos offered the greatest surprises in high energy physics during the last decades. In this chapter we review the main milestones of this passionate history: the first neutrino beams which established the separate neutrino identities, the Gargamelle discovery of the weak neutral currents, the LEP determination of three light neutrino species and the discovery of the intriguing phenomenon of neutrino oscillations. The experimental determination of the neutrino mass matrix elements is still in progress with several experiments either taking data or planned for the near future. We end with the present theoretical puzzles and the experiments which may help to solve them.


2019 ◽  
Vol 214 ◽  
pp. 02022
Author(s):  
Silvia Borghi ◽  
Chris Burr ◽  
Marco Clemencic ◽  
Gloria Corti ◽  
Ben Couturier ◽  
...  

The LHCb experiment uses a custom made C++ detector and geometry description toolkit, integrated with the Gaudi framework, designed when the LHCb software was first implemented. With the LHCb upgrade scheduled for 2021, it is necessary for the experiment to review this choice and adapt to the evolution of software and computing (in terms of e.g multi-threading support or vectorization) The Detector Description Toolkit for High Energy Physics (DD4hep) is a good candidate for the replacement for LHCb’s geometry description framework: it is possible to integrate it with the LHCb core software framework and its features theoretically match the requirements: in terms of geometry and detector description but also concerning the possibility to add detector alignment parameters and the integration with simulation tools. In this paper we report on detailed studies undertaken to compare the feature set proposed by the DD4hep toolkit, to what is needed by LHCb. We show not only how the main description could be migrated, but also how to integrate the LHCb real-time alignment tools in this toolkit, in order to identify the main obstacles to the migration of the experiment to DD4hep.


2016 ◽  
Vol 31 (33) ◽  
pp. 1644018 ◽  
Author(s):  
Chengtao Wang ◽  
Kai Zhang ◽  
Qingjin Xu

IHEP (the Institute of High Energy Physics, Beijing, China) has started the R&D of high field accelerator magnet technology from 2014 for recently proposed CEPC-SppC (Circular Electron Positron Collider, Super proton–proton Collider) project. The conceptual design study of a 20-T dipole magnet is ongoing with the common coil configuration, and a 12-T model magnet will be fabricated in the next two years. A 3-step R&D process has been proposed to realize this 12-T common-coil model magnet: first, a 12-T subscale magnet will be fabricated with Nb3Sn and NbTi superconductors to investigate the fabrication process and characteristics of Nb3Sn coils, then a 12-T subscale magnet will be fabricated with only Nb3Sn superconductors to test the stress management method and quench protection method of Nb3Sn coils; the final step is fabricating the 12-T common-coil dipole magnet with HTS (YBCO) and Nb3Sn superconductors to test the field optimization method of the HTS and Nb3Sn coils. The characteristics of these R&D steps will be introduced in the paper.


2009 ◽  
Vol 24 (04) ◽  
pp. 617-656
Author(s):  
SONG-MING WANG

The understanding of the dynamics behind the breaking of the electroweak symmetry is one of the most important goals in the field of high energy physics. In the Standard Model (SM) Higgs mechanism plays a key role in the symmetry breaking, one manifestation of which is spin-0 Higgs boson. Thus the search for the Higgs boson is one of the flag-ship analyses at the Tevatron. Over the past few years the CDF experiment has made significant improvements in its sensitivity on the search for the SM Higgs boson. In this paper we summarize CDF's most recent results on the searches for the SM Higgs boson production at the Tevatron using data samples of integrated luminosities up to 3 fb-1. We also present the Tevatron's latest combined results on the SM Higgs boson search, and discuss the possibility that it could be found at the Tevatron in the near future.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 678
Author(s):  
Patryk Chaber ◽  
Paweł D. Domański ◽  
Daniel Dąbrowski ◽  
Maciej Ławryńczuk ◽  
Robert Nebeluk ◽  
...  

The digital twins technology delivers a new degree of freedom into system implementation and maintenance practice. Using this approach, a technological system can be efficiently modeled and simulated. Furthermore, such a twin offline system can be efficiently used to investigate real system issues and improvement opportunities, e.g., improvement of the existing control system or development of a new one. This work describes the development of a control system using the digital twins methodology for a gas system delivering a specific mixture of gases to the time-of-flight (ToF) multipurpose detector (MPD) used during high-energy physics experiments in the Joint Institute for Nuclear Research (Dubna, Russia). The gas system digital twin was built using a test stand and further extended into target full-scale installation planned to be built in the near future. Therefore, conducted simulations are used to validate the existing system and to allow validation of the planned new system. Moreover, the gas system digital twin enables testing of new control opportunities, improving the operation of the target gas system.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jie Zhao ◽  
Yan-Ting Hu ◽  
Yu Lu ◽  
Hao Zhang ◽  
Li-Xiang Hu ◽  
...  

AbstractGeneration of energetic electron-positron pairs using multi-petawatt (PW) lasers has recently attracted increasing interest. However, some previous laser-driven positron beams have severe limitations in terms of energy spread, beam duration, density, and collimation. Here we propose a scheme for the generation of dense ultra-short quasi-monoenergetic positron bunches by colliding a twisted laser pulse with a Gaussian laser pulse. In this scheme, abundant γ-photons are first generated via nonlinear Compton scattering and positrons are subsequently generated during the head-on collision of γ-photons with the Gaussian laser pulse. Due to the unique structure of the twisted laser pulse, the positrons are confined by the radial electric fields and experience phase-locked-acceleration by the longitudinal electric field. Three-dimensional simulations demonstrate the generation of dense sub-femtosecond quasi-monoenergetic GeV positron bunches with tens of picocoulomb (pC) charge and extremely high brilliance above 1014 s−1 mm−2 mrad−2 eV−1, making them promising for applications in laboratory physics and high energy physics.


2020 ◽  
Vol 35 (15n16) ◽  
pp. 2041013 ◽  
Author(s):  
Wei-Ming Yao

Particle identification (PID) plays a key role in heavy-flavor physics in high-energy physics experiments. However, its impact on Higgs physics is still not clear. In this note, we will explore some of the potential of PID to improve the identification of heavy-flavor jets by using identified charged kaons in addition to the traditional vertexing information. This could result in a better measurement of the Higgs-charm Yukawa coupling at the future [Formula: see text] colliders.


2020 ◽  
Vol 245 ◽  
pp. 02032
Author(s):  
Carl Vuosalo ◽  
Sunanda Banerjee ◽  
Markus Frank ◽  
Vladimir Ivanchenko ◽  
Sergio Lo Meo ◽  
...  

DD4hep is an open-source software toolkit that provides comprehensive and complete generic detector descriptions for high energy physics (HEP) detectors. The Compact Muon Solenoid collaboration (CMS) has recently evaluated and adopted DD4hep to replace its custom detector description software. CMS has demanding software requirements as a very large, longrunning experiment that must support legacy geometries and study many possible upgraded detector designs of a constantly evolving detector that will be taking data for many years to come. CMS has chosen DD4hep since it is a high-quality, community-supported solution that will benefit from continuing modernization and maintenance. This presentation will discuss the issues of DD4hep adoption, the advantages and disadvantages of the various design choices, performance results, and the integration of the plugin systems from CMS and Gaudi, another open-source software framework. Recommendations about DD4hep based upon the CMS use cases will also be presented.


Sign in / Sign up

Export Citation Format

Share Document