scholarly journals Fast simulation of Time-of-Flight detectors at the LHC

2021 ◽  
Vol 251 ◽  
pp. 03027
Author(s):  
Olivier Rousselle ◽  
Tom Sykora

The modelling of Cherenkov based detectors is traditionally done using Geant4 toolkit. In this work, we present another method based on Python programming language and Numba high performance compiler to speed up the simulation. As an example we take one of the Forward Proton Detectors at the CERN LHC - ATLAS Forward Proton (AFP) Time-of-Flight, which is used to reduce the background from multiple proton-proton collisions in soft and hard diffiractive events. We describe the technical details of the fast Cherenkov model of photon generation and transportation through the optical part of the ToF detector. The fast simulation is revealed to be about 200 times faster than the corresponding Geant4 simulation, and provides similar results concerning length and time distributions of photons. The study is meant as the first step in a construction of a building kit allowing creation of a fast simulation of an arbitrary shaped optical part of detectors.

2020 ◽  
Vol 3 ◽  
Author(s):  
A. Bocci ◽  
V. Innocente ◽  
M. Kortelainen ◽  
F. Pantaleo ◽  
M. Rovere

The High-Luminosity upgrade of the Large Hadron Collider (LHC) will see the accelerator reach an instantaneous luminosity of 7 × 1034 cm−2 s−1 with an average pileup of 200 proton-proton collisions. These conditions will pose an unprecedented challenge to the online and offline reconstruction software developed by the experiments. The computational complexity will exceed by far the expected increase in processing power for conventional CPUs, demanding an alternative approach. Industry and High-Performance Computing (HPC) centers are successfully using heterogeneous computing platforms to achieve higher throughput and better energy efficiency by matching each job to the most appropriate architecture. In this paper we will describe the results of a heterogeneous implementation of pixel tracks and vertices reconstruction chain on Graphics Processing Units (GPUs). The framework has been designed and developed to be integrated in the CMS reconstruction software, CMSSW. The speed up achieved by leveraging GPUs allows for more complex algorithms to be executed, obtaining better physics output and a higher throughput.


Author(s):  
Hai-Yan Yin ◽  
Ya-Peng Fan ◽  
Juan Liu ◽  
Dao-Tong Li ◽  
Jing Guo ◽  
...  

AbstractPurinergic signalling adenosine and its A1 receptors have been demonstrated to get involved in the mechanism of acupuncture (needling therapy) analgesia. However, whether purinergic signalling would be responsible for the local analgesic effect of moxibustion therapy, the predominant member in acupuncture family procedures also could trigger analgesic effect on pain diseases, it still remains unclear. In this study, we applied moxibustion to generate analgesic effect on complete Freund’s adjuvant (CFA)-induced inflammatory pain rats and detected the purine released from moxibustioned-acupoint by high-performance liquid chromatography (HPLC) approach. Intramuscular injection of ARL67156 into the acupoint Zusanli (ST36) to inhibit the breakdown of ATP showed the analgesic effect of moxibustion was increased while intramuscular injection of ATPase to speed up ATP hydrolysis caused a reduced moxibustion-induced analgesia. These data implied that purinergic ATP at the location of ST36 acupoint is a potentially beneficial factor for moxibustion-induced analgesia.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1074
Author(s):  
Raul Rotar ◽  
Sorin Liviu Jurj ◽  
Flavius Opritoiu ◽  
Mircea Vladutiu

This paper presents a mathematical approach for determining the reliability of solar tracking systems based on three fault coverage-aware metrics which use system error data from hardware, software as well as in-circuit testing (ICT) techniques, to calculate a solar test factor (STF). Using Euler’s named constant, the solar reliability factor (SRF) is computed to define the robustness and availability of modern, high-performance solar tracking systems. The experimental cases which were run in the Mathcad software suite and the Python programming environment show that the fault coverage-aware metrics greatly change the test and reliability factor curve of solar tracking systems, achieving significantly reduced calculation steps and computation time.


Sign in / Sign up

Export Citation Format

Share Document