scholarly journals Novel optofluidic concepts enabled by topological microfluidics-INVITED

2021 ◽  
Vol 255 ◽  
pp. 10002
Author(s):  
Anupam Sengupta

The coupling between flow and director orientation of liquid crystals (LCs) has been long utilized to devise wide-ranging applications spanning modern displays, medical and environmental solutions, and bio-inspired designs and applications. LC-based optofluidic platforms offer a non-invasive handle to modulate light and material fields, both locally and dynamically. The flow-driven reorientation of the LC molecules can tailor distinct optical and mechanical responses in microfluidic confinements, and harness the coupling therein. Yet the synergy between traditional optofluidics with isotropic fluids and LC microfluidics remains at its infancy. Here, we discuss emerging optofluidic concepts based on Topological Microfluidics, leveraging microfluidic control of topological defects and defect landscapes. With a specific focus on the role of surface anchoring and microfluidic geometry, we present recent and ongoing works that harness flow-controlled director and defect configurations to modulate optical fields. The flow-induced optical attributes, and the corresponding feedback, is enhanced in the vicinity of the topological defects which geenerate distinct isotropic opto-material properties within an anisotropic matrix. By harnessing the rich interplay of confining geometry, anchoring and micro-scale nematodynamics, topological microfluidics offers a promising platform to ideate the next generation of optofluidic and optomechnical concepts.

2021 ◽  
Author(s):  
Aliaksandr Dzementsei ◽  
Younes F. A Barooji ◽  
Elke A Ober ◽  
Lene Broeng Oddershede

Material properties of living matter play an important role for biological function and development. Yet, quantification of material properties of internal organs in vivo, without causing physiological damage, remains challenging. Here, we present a non-invasive approach based on modified optical tweezers for quantifying sub-cellular material properties deep inside living zebrafish. Material properties of cells within the gut region of living zebrafish are quantified as deep as 150 μ into the biological tissue. The measurements demonstrate differential mechanical properties of the developing foregut organs progenitors: Gut progenitors are more elastic than any of the neighboring cell populations at the time when the developing organs undergo substantial displacements during morphogenesis. The higher elasticity of gut progenitors correlates with an increased cellular concentration of microtubules. The results infer a role of material properties during morphogenesis and the approach paves the way for quantitative material investigations in vivo of embryos, explants, or organoids.


2016 ◽  
Vol 1 (1) ◽  
pp. 4
Author(s):  
Marymol Koshy ◽  
Bushra Johari ◽  
Mohd Farhan Hamdan ◽  
Mohammad Hanafiah

Hypertrophic cardiomyopathy (HCM) is a global disease affecting people of various ethnic origins and both genders. HCM is a genetic disorder with a wide range of symptoms, including the catastrophic presentation of sudden cardiac death. Proper diagnosis and treatment of this disorder can relieve symptoms and prolong life. Non-invasive imaging is essential in diagnosing HCM. We present a review to deliberate the potential use of cardiac magnetic resonance (CMR) imaging in HCM assessment and also identify the risk factors entailed with risk stratification of HCM based on Magnetic Resonance Imaging (MRI).


2020 ◽  
Vol 26 (32) ◽  
pp. 3915-3927 ◽  
Author(s):  
Stefano Ballestri ◽  
Claudio Tana ◽  
Maria Di Girolamo ◽  
Maria Cristina Fontana ◽  
Mariano Capitelli ◽  
...  

: Nonalcoholic fatty liver disease (NAFLD) embraces histopathological entities ranging from the relatively benign simple steatosis to the progressive form nonalcoholic steatohepatitis (NASH), which is associated with fibrosis and an increased risk of progression to cirrhosis and hepatocellular carcinoma. NAFLD is the most common liver disease and is associated with extrahepatic comorbidities including a major cardiovascular disease burden. : The non-invasive diagnosis of NAFLD and the identification of subjects at risk of progressive liver disease and cardio-metabolic complications are key in implementing personalized treatment schedules and follow-up strategies. : In this review, we highlight the potential role of ultrasound semiquantitative scores for detecting and assessing steatosis severity, progression of NAFLD, and cardio-metabolic risk. : Ultrasonographic scores of fatty liver severity act as sensors of cardio-metabolic health and may assist in selecting patients to submit to second-line non-invasive imaging techniques and/or liver biopsy.


This book addresses the central challenge facing rich countries: how to ensure that ordinary working families see their living standards and the prospects for their children improve rather than stagnate over time. It presents the findings from a comprehensive analysis of performance over recent decades across the rich countries of the OECD, in terms of real income growth around and below the middle. It relates this performance to overall economic growth, exploring why these often diverge substantially, and to the different models of capitalism or economic growth embedded in different countries. In-depth comparative and UK-focused analyses also focus on wages and the labour market and on the role of redistribution. Going beyond income, other indicators and aspects of living standards are also incorporated including non-monetary indicators of deprivation and financial strain, wealth and its distribution, and intergenerational mobility. By looking across this broad canvas, the book teases out how ordinary households have fared in recent decades in these critically important respects, and how that should inform the quest for inclusive growth and prosperity.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 982
Author(s):  
Xiaoyan Peng ◽  
Rongguang Zhang ◽  
Chen Wang ◽  
Feiyan Yu ◽  
Mingyang Yu ◽  
...  

Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L. lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes’ migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes’ movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB’s potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.


Author(s):  
Iman Mehdipour ◽  
Gabriel Falzone ◽  
Dale Prentice ◽  
Narayanan Neithalath ◽  
Dante Simonetti ◽  
...  

Optimizing the spatial distribution of contacting gas and the gas processing conditions enhances CO2 mineralization reactions and material properties of carbonate-cementitious monoliths.


Author(s):  
K. H. Sedeek ◽  
K. Aboualfotouh ◽  
S. M. Hassanein ◽  
N. M. Osman ◽  
M. H. Shalaby

Abstract Background Acute bilateral lower limb weakness is a common problem in children which necessitates a rapid method for diagnosis. MRI is a non-invasive imaging technique that produces high-quality images of the internal structure of the brain and spinal cord. Results MRI was very helpful in reaching rapid and prompt diagnosis in children with acute inability to walk. Acute disseminated encephalomyelitis (ADEM), Guillain–Barré syndrome (GBS), and acute transverse myelitis (ATM) were the most common causes in our study. MRI proved to be of high sensitivity in detecting the lesions and reaching the diagnosis in ADEM and GBS; however, there was no significant relation between the lesions’ size, enhancement pattern, and severity of the disease or prognosis, yet in ATM the site of the lesion and number of cord segment affection were significantly related to the severity of the disease and prognosis. Conclusion MRI is a quick tool to reach the diagnosis of children with acute secondary inability to walk, and to eliminate other differential diagnosis which is essential for proper treatment and rapid full recovery. It is highly sensitive in detecting the lesions, their site and size.


Sign in / Sign up

Export Citation Format

Share Document