scholarly journals Foregut organ progenitors and their niche display distinct viscoelastic properties in vivo during early morphogenesis stages

2021 ◽  
Author(s):  
Aliaksandr Dzementsei ◽  
Younes F. A Barooji ◽  
Elke A Ober ◽  
Lene Broeng Oddershede

Material properties of living matter play an important role for biological function and development. Yet, quantification of material properties of internal organs in vivo, without causing physiological damage, remains challenging. Here, we present a non-invasive approach based on modified optical tweezers for quantifying sub-cellular material properties deep inside living zebrafish. Material properties of cells within the gut region of living zebrafish are quantified as deep as 150 μ into the biological tissue. The measurements demonstrate differential mechanical properties of the developing foregut organs progenitors: Gut progenitors are more elastic than any of the neighboring cell populations at the time when the developing organs undergo substantial displacements during morphogenesis. The higher elasticity of gut progenitors correlates with an increased cellular concentration of microtubules. The results infer a role of material properties during morphogenesis and the approach paves the way for quantitative material investigations in vivo of embryos, explants, or organoids.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 977.1-977
Author(s):  
A. Potapova ◽  
O. Egorova ◽  
O. Alekseeva ◽  
A. Volkov ◽  
S. Radenska-Lopovok

Background:Ultrasound (US) is a non-invasive and safe imaging method that allows in vivo differentiation of the morphological structures of subcutaneous fat (SCF) tissue in in normal and pathology.Objectives:Reveal features of ultrasound changes in SCF in panniculitis (Pn).Methods:57 patients (f – 45, m - 12) aged 18 - 67 years with an initial diagnosis of erythema nodosum and a disease duration of 3.6 ± 1.4 years were examined. In addition to the general clinical examination, a computed tomography of the chest organs and a pathomorphological examination of a skin biopsy from the site of the node were performed. Ultrasound was performed on a MyLabTwice apparatus (ESAOTE, Italy) using a multi-frequency linear transducer (10-18 MHz) with the PD technique, the parameters of which were adapted for recording low-speed flows (PRF 300-600 Hz, low filter, dynamic range - 20-40 dB), the presence of vascularization was assessed not only in the affected area, but also on the contralateral side using high-energy Doppler.Results:33 patients were diagnosed with septal Pn (SPn), 24 - lobular Pn (LPn). In all cases, the diagnosis was verified by histological examination. Ultrasound made it possible to assess the thickness, echoicity and vascularization of the SCF. In 35 patients, significant thickening of the SCF was revealed (as compared to the contralateral side), of which in 14 cases with SPn, in 21 - with LPn. Significant diffuse thickening of the SCF with the contralateral side was observed in 18 patients, incl. in 12 (66%) patients with LPn. Limited thickening was more typical for SPn (73%). A significant increase in the echoicity of the SCF was noted in all forms of Pn. A “lobular” echo pattern with an anechogenic environment was observed in 25 patients, of which 18 (72%) had LPn. An increase in vascularization compared to the contralateral side was recorded in 30 cases (SPn-17, LPn-13).Conclusion:The obtained preliminary results indicate the important role of ultrasound in assessing the depth and prevalence of the inflammatory process at Pn. To clarify the diagnostic value of this method, further studies are needed on a larger sample of patients.Disclosure of Interests:None declared


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.


2017 ◽  
Author(s):  
Sébastien Harlepp ◽  
Fabrice Thalmann ◽  
Gautier Follain ◽  
Jacky G. Goetz

AbstractForce sensing and generation at the tissular and cellular scale is central to many biological events. There is a growing interest in modern cell biology for methods enabling force measurements in vivo. Optical trapping allows non-invasive probing of pico-Newton forces and thus emerged as a promising mean for assessing biomechanics in vivo. Nevertheless, the main obstacles rely in the accurate determination of the trap stiffness in heterogeneous living organisms, at any position where the trap is used. A proper calibration of the trap stiffness is thus required for performing accurate and reliable force measurements in vivo. Here, we introduce a method that overcomes these difficulties by accurately measuring hemodynamic profiles in order to calibrate the trap stiffness. Doing so, and using numerical methods to assess the accuracy of the experimental data, we measured flow profiles and drag forces imposed to trapped red blood cells of living zebrafish embryos. Using treatments enabling blood flow tuning, we demonstrated that such method is powerful in measuring hemodynamic forces in vivo with accuracy and confidence. Altogether, this study demonstrates the power of optical tweezing in measuring low range hemodynamic forces in vivo and offers an unprecedented tool in both cell and developmental biology.


2021 ◽  
pp. 1-3
Author(s):  
Barassi Giovanni ◽  
Guerri Sergio ◽  
Tavani Roberta ◽  
Ricucci Giampiero ◽  
De Luca Giorgia ◽  
...  

There is an interrelation with ultrasound / physiotherapist and the duty of the physiotherapist to know how to perform ultrasound examinations alone, not for diagnostic purposes, to follow the evolution of the therapeutic cycle of physiotherapy. For this reason, ultrasound image analysis (US) is a promising non-invasive approach that uses load-dependent changes in the intensity of the echo to characterize the rigidity of muscle and tendon tissue. The purpose of this contribution is to improve the use of ultrasound images (US) and the role of the physiotherapist, who are able to detect localized changes, in particular in stiffness of the tendon due to partial and full-thickness tendon tears. Image intensity information is less sensitive for identifying load transmission variations resulting from partial thickness cuts initiated on the joint side. Ultrasound images can be useful for quantitatively assessing the variations dependent on the tendon load and muscle stiffness in physiotherapy and that the interruption of the behavior of the acousto-elastic ultrasound images can be indicative of substantial damage to the muscle or tendon.


2019 ◽  
Vol 4 (1) ◽  
pp. 190-195 ◽  
Author(s):  
Huirong Lin ◽  
Shuang Li ◽  
Junqing Wang ◽  
Chengchao Chu ◽  
Yang Zhang ◽  
...  

A multi-level supramolecular system produced by single-step Fe3+-mediated ionic crosslinking self-assembly can overcome the critical issues of current sonodynamic therapy (SDT) and address the need to monitor therapeutic effects in vivo with a non-invasive approach.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13086-e13086
Author(s):  
Xiu Chen ◽  
Jinhai Tang

e13086 Background: Obesity is associated with the risk of breast cancer(BCa) incidence and development. However, biological changes in obesity BCa individuals are still uncertain. Nowadays, circCNIH4, one of novel non-coding RNAs, was found to be a non-invasive biomarker in cancers. Methods: We verified the cancer-promoting role of obesity in BCa patients by comparing BMI indexes of 33 BCa and 44 benign tumor patients. Then we cocultured viscera adipose cells(HPA-v) and BCa cells(MCF-7/H and MDA-MB-231/H) to confirm the function of adipocytes on metastasis of BCa cells through wound healing, transwell assays. In vivo experiments were also performed. We analyzed the expression level of circCNIH4 in MCF-7/H, MDA-MB-231/H and different subtypes of BCa cells by quantitative polymerase chain reaction. Simultaneously, we identified inhibited effects of circCNIH4 on metastasis of BCa cells by wound healing, transwell assays and verified the location of circCNIH4 by FISH. Luciferase Assay was used to detect harbored miRNA. Rescue experiments were then applied. Results: We found the BMI of BCa patients(24.37±2.51) was much higher than benign patients(22.97±2.91). Metastasis of BCa cells were obviously promoted after in vitro and in vivo experiments. Then we found the expression of circCNIH4 in MCF-7/H and MDA-MB-231/H were down-regulated 0.71 and 0.52 than that in MCF-7 and MDA-MB-231. Also, circCNIH4 was positively correlated with less aggressive types of BCa cells. Overexpression of circCNIH4 in MDA-MB-231 could suppress cell invasion and migration, while silencing of it in MCF-7 promoted cell invasion and migration. The FISH assay demonstrated that circCNIH4 mainly located in the cytoplasm and might function as a “sponge” for miRNA. MiR-135b functioned as a tumor promoter gene from data of 93 BCa patients (HR = 2.27; 1.01 − 5.12), and it could be captured by circCNIH4 via luciferase and rescued assays. Conclusions: In this study, we revealed that BMI or viscera adipocytes could deteriorate prognosis of BCa and circCNIH4 could be a novel biomarker for non-invasive BCa. In details, circCNIH4 mainly suppressed the adipocyte's pro-metastasis effects on BCa by capturing miR-135b.


PPAR Research ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Andréa Tavares Dantas ◽  
Michelly Cristiny Pereira ◽  
Moacyr Jesus Barreto de Melo Rego ◽  
Laurindo Ferreira da Rocha ◽  
Ivan da Rocha Pitta ◽  
...  

Fibrosis is recognized as an important feature of many chronic diseases, such as systemic sclerosis (SSc), an autoimmune disease of unknown etiology, characterized by immune dysregulation and vascular injury, followed by progressive fibrosis affecting the skin and multiple internal organs. SSc has a poor prognosis because no therapy has been shown to reverse or arrest the progression of fibrosis, representing a major unmet medical need. Recently, antifibrotic effects of PPARγligands have been studiedin vitroandin vivoand some theories have emerged leading to new insights. Aberrant PPARγfunction seems to be implicated in pathological fibrosis in the skin and lungs. This antifibrotic effect is mainly related to the inhibition of TGF-β/Smad signal transduction but other pathways can be involved. This review focused on recent studies that identified PPARγas an important novel pathway with critical roles in regulating connective tissue homeostasis, with emphasis on skin and lung fibrosis and its role on systemic sclerosis.


Author(s):  
Barbara Cisterna ◽  
Federico Boschi ◽  
Anna Cleta Croce ◽  
Rachele Podda ◽  
Serena Zanzoni ◽  
...  

Optical Imaging (OI) is an emerging field developed in recent years which can be a very versatile, fast and non-invasive approach for the acquisition of images of  small (few centimetres) sized samples, such as layers of cells (in vitro), small animals (in vivo), animal organs (ex vivo) and innovative materials. OI was primarily developed for biomedical applications to study the progression of some pathologies and to assess the efficacy of new pharmaceutical compounds. Here we applied the OI technique to a completely new field: the study of food optical properties. In this case we exploited the optical properties of endogenous molecules, which are generally considered responsible of a background noise affecting the investigation. Here we used this sort of “noise”, named autofluorescence, to obtain information on the drying of Corvinone grapes employed for Amarone wine production. OI can provide interesting information and, inserted in a multimodal approach, it may be a real support to other techniques in the description of a biological phenomenon.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2379 ◽  
Author(s):  
Guillermo Rus ◽  
Inas H. Faris ◽  
Jorge Torres ◽  
Antonio Callejas ◽  
Juan Melchor

The adoption of multiscale approaches by the biomechanical community has caused a major improvement in quality in the mechanical characterization of soft tissues. The recent developments in elastography techniques are enabling in vivo and non-invasive quantification of tissues’ mechanical properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix, breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers. First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity; secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis in elastography; and finally, by compounding preliminary investigations of those elastography parameters within different technologies. In conclusion, evidence of the diagnostic capability of elastic parameters beyond linear stiffness is gaining momentum as a result of the technological and imaging developments in the field of biomechanics.


2020 ◽  
Vol 93 (1113) ◽  
pp. 20190740 ◽  
Author(s):  
Rong Bing ◽  
Krithika Loganath ◽  
Philip Adamson ◽  
David Newby ◽  
Alastair Moss

Despite recent advances, cardiovascular disease remains the leading cause of death globally. As such, there is a need to optimise our current diagnostic and risk stratification pathways in order to better deliver individualised preventative therapies. Non-invasive imaging of coronary artery plaque can interrogate multiple aspects of coronary atherosclerotic disease, including plaque morphology, anatomy and flow. More recently, disease activity is being assessed to provide mechanistic insights into in vivo atherosclerosis biology. Molecular imaging using positron emission tomography is unique in this field, with the potential to identify specific biological processes using either bespoke or re-purposed radiotracers. This review provides an overview of non-invasive vulnerable plaque detection and molecular imaging of coronary atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document