La mécanique dissipative des géo-matériaux granulaires et ses applications pratiques en Génie Civil

Author(s):  
Etienne Frossard

L’article, résultant d’un travail de long terme sur la physique des géo-matériaux granulaires et la pratique du génie civil de grandes infrastructures, synthétise une vision nouvelle du comportement mécanique de ces matériaux, à partir d’approches dissipatives micromécaniques originales. Après le contexte et les hypothèses-clé, il présente les aspects essentiels des structures dissipatives induites par la friction de contact élémentaire, associée à des spécificités de mécanique statistique dans ces matériaux en mouvement quasi-statique, et leur expression multi-échelle par des relations tensorielles fortes : les équations de la dissipation d’énergie résultant de la friction. Sur cette base, est ensuite établi un large ensemble de propriétés pratiques d’usage général en génie civil, incluant : le critère de rupture, le couplage résistance au cisaillement/variations de volume, la compaction cyclique, l’équilibre géostatique « au repos »… Bien que l’essentiel de l’article soit focalisé sur les caractères induits par la friction de contact, une dernière section présente d’autres propriétés-clé induites par la rupture des granulats, autre processus dissipatif après la friction de contact. Ces propriétés incluent des incidences explicites sur les effets d’échelle dans le comportement structural d’ouvrages, vérifiées sur de grands ouvrages.

Author(s):  
Bian He ◽  
Xiaoqi Zhang ◽  
Anmin Duan ◽  
Qing Bao ◽  
Yimin Liu ◽  
...  

AbstractLarge-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. The basic model responses of the surface air temperature (SAT) and precipitation were documented. The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes. The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes, which is similar to the results from the combined forcing of SST and SIC. However, the change in global precipitation is dominated by the changes in the global SST rather than SIC, partly because tropical precipitation is mainly driven by local SST changes. The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members. The relative roles of SST and SIC, together with their combined influence on Arctic amplification, are also discussed. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yukiko Hirabayashi ◽  
Haireti Alifu ◽  
Dai Yamazaki ◽  
Yukiko Imada ◽  
Hideo Shiogama ◽  
...  

AbstractThe ongoing increases in anthropogenic radiative forcing have changed the global water cycle and are expected to lead to more intense precipitation extremes and associated floods. However, given the limitations of observations and model simulations, evidence of the impact of anthropogenic climate change on past extreme river discharge is scarce. Here, a large ensemble numerical simulation revealed that 64% (14 of 22 events) of floods analyzed during 2010-2013 were affected by anthropogenic climate change. Four flood events in Asia, Europe, and South America were enhanced within the 90% likelihood range. Of eight snow-induced floods analyzed, three were enhanced and four events were suppressed, indicating that the effects of climate change are more likely to be seen in the snow-induced floods. A global-scale analysis of flood frequency revealed that anthropogenic climate change enhanced the occurrence of floods during 2010-2013 in wide area of northern Eurasia, part of northwestern India, and central Africa, while suppressing the occurrence of floods in part of northeastern Eurasia, southern Africa, central to eastern North America and South America. Since the changes in the occurrence of flooding are the results of several hydrological processes, such as snow melt and changes in seasonal and extreme precipitation, and because a climate change signal is often not detectable from limited observation records, large ensemble discharge simulation provides insights into anthropogenic effects on past fluvial floods.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayoshi Ishii ◽  
Nobuhito Mori

Abstract A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuhei Takaya ◽  
Yu Kosaka ◽  
Masahiro Watanabe ◽  
Shuhei Maeda

AbstractThe interannual variability of the Asian summer monsoon has significant impacts on Asian society. Advances in climate modelling have enabled us to make useful predictions of the seasonal Asian summer monsoon up to approximately half a year ahead, but long-range predictions remain challenging. Here, using a 52-member large ensemble hindcast experiment spanning 1980–2016, we show that a state-of-the-art climate model can predict the Asian summer monsoon and associated summer tropical cyclone activity more than one year ahead. The key to this long-range prediction is successfully simulating El Niño-Southern Oscillation evolution and realistically representing the subsequent atmosphere–ocean response in the Indian Ocean–western North Pacific in the second boreal summer of the prediction. A large ensemble size is also important for achieving a useful prediction skill, with a margin for further improvement by an even larger ensemble.


2009 ◽  
Vol 5 (H15) ◽  
pp. 88-88
Author(s):  
Roberto P. Muñoz ◽  
L. F. Barrientos ◽  
B. P. Koester ◽  
D. G. Gilbank ◽  
M. D. Gladders ◽  
...  

AbstractWe use deep nIR imaging of 15 galaxy clusters at z ≃ 1 to study the build-up of the red-sequence in rich clusters since the Universe was half its present age. We measured, for the first time, the luminous-to-faint ratio of red-sequence galaxies at z=1 from a large ensemble of clusters, and found an increase of 100% in the ratio of luminous-to-faint red-sequence galaxies from z=0.45 to 1.0. The measured change in this ratio as function of redshift is well-reproduced by a simple evolutionary model developed in this work, that consists in an early truncation of the star formation for bright cluster galaxies and a delayed truncation for faint cluster galaxies.


Sign in / Sign up

Export Citation Format

Share Document