scholarly journals Scheme features of radio pulse gating for radar measurements

2019 ◽  
Vol 30 ◽  
pp. 11011
Author(s):  
Vladimir Zakharchenko ◽  
Alexander Khoperskov

The model of a radio pulse stroboscopic converter consisting of a mixer and a narrowband filter tuned to the difference frequency of the carrier signals is considered. We demonstrate that the measurement of the phase structure of the input signals can be made at low frequency by amplitude methods by changing the phase both in the channel of the gating radio pulses and in the low frequency channel. The radio-pulse gating scheme goes into a phase-sensitive mode when the system clock frequency is synchronized with the second harmonic of the difference frequency, however, in this case, a parasitic phase modulation occurs in the converted signal, which does not depend on the transformation coefficient of the spectrum and is determined only by the duty cycle of the input signal. To eliminate parasitic modulation, which distorts the envelope of the output signal of the converter in a phase-sensitive mode, it is proposed to use an auto-shift circuit with a falling “slow” sawtooth voltage when generating gating radio pulses.

1991 ◽  
Vol 45 (1) ◽  
pp. 115-123 ◽  
Author(s):  
S. Guha ◽  
Ruby Sarkar

A large-amplitude whistler wave excited at the difference frequency of two high-frequency electromagnetic pump waves is shown to decay parametrically into a lower-hybrid wave (LHW) and a low-frequency ion–Bernstein wave (IBW) in a collisionless magnetized multi-ion-species plasma,. A nonlinear dispersion relation describing this parametric interaction process is derived. The low-frequency ponderomotive force along the direction of the external magnetic field leads to the dominant coupling. Possible applications to ion heating in the ionosphere, in the earth's magnetosphere and in laboratory plasmas are discussed.


Author(s):  
Guillaume de Hauteclocque ◽  
Flávia Rezende ◽  
Olaf Waals ◽  
Xiao-Bo Chen

The second order low-frequency loads are one of main sources of excitation for moored systems. These loads are usually decomposed into the quadratic part, contributed only by first order quantities and potential part contributed by the second order potentials. In shallow water the second order incoming and diffracted potentials give a significant contribution to the low frequency forces. Therefore, the accuracy on the determination of this parcel of the low-frequency loads is a key issue for the assessment of mooring lines and operability of systems moored in shallow water area, as for example LNG terminals. Due to the complexity in computing the second order diffraction potential, which would involve a non-homogeneous free surface boundary condition, the so-called Pinkster approximation has been proposed. This approximation is based on the assumption that the major contribution to the potential part of low-frequency loads is given by the second order potential of the undisturbed incoming waves. The methods to compute the wave forces related to the second order potentials are based on scaling of the first order wave induced forces. Another approximation recently formulated in Chen and Rezende consists of developing the second-order bi-frequency load into a series of different orders of the difference frequency. The potential contribution to the term proportional to the difference-frequency can be evaluated efficiently by involving an integral over a small zone on the free surface around the body. In the present paper, the existing approximations are revisited and compared to analytical solution of exact second-order load on a vertical cylinder and for the case of floating body (LNG) in shallow water. Some guidelines in the practical use of different approximations will be derived.


Author(s):  
Nuno Fonseca ◽  
Carl Trygve Stansberg

The paper presents realistic horizontal wave drift force coefficients and low frequency damping coefficients for the Exwave semi-submersible under severe seastates. The analysis includes conditions with collinear waves and current. Model test data is used to identify the difference frequency wave exciting force coefficients based on a second order signal analysis technique. First, the slowly varying excitation is estimated from the relationship between the incoming wave and the low frequency motion using a linear oscillator. Then, the full quadratic transfer function (QTF) of the difference frequency wave exciting forces is defined from the relationship between the incoming waves and the second order force response. The process identifies also the linear low frequency damping. The paper presents results from cases selected from the EXWAVE JIP test matrix. The empirical wave drift coefficients are compared to potential flow predictions and to coefficients from a semi-empirical formula. The results show that the potential flow predictions largely underestimate the wave drift forces, especially at the low frequency range where severe seastates have most of the energy.


Author(s):  
Nuno Fonseca ◽  
Carl Trygve Stansberg

A method is followed in the present analysis to estimate realistic surge and sway wave drift force coefficients for the Exwave FPSO. Model test data is used to identify the difference frequency wave exciting force coefficients based on a second order signal analysis technique. First, the slowly varying excitation is estimated from the relationship between the incoming wave and the low frequency motion using a linear oscillator. Then, the full QTF of the difference frequency wave exciting forces is defined from the relationship between the incoming waves and the second order force response. The process identifies also the linearized low frequency damping. The paper presents results from a few cases selected from the Exwave JIP test matrix. Empirical mean wave drift coefficients are compared to potential flow predictions. It is shown that the latter underestimate the wave drift forces, especially at the lower frequency range where severe seastates have most of the energy. The sources for the discrepancies are discussed.


2010 ◽  
Vol 55 (3) ◽  
pp. 1114-1119 ◽  
Author(s):  
Jia Liu ◽  
Michael D. Miller ◽  
Robert M. Danovich ◽  
Nathan Vandergrift ◽  
Fangping Cai ◽  
...  

ABSTRACTRaltegravir is highly efficacious in the treatment of HIV-1 infection. The prevalence and impact on virologic outcome of low-frequency resistant mutations among HIV-1-infected patients not previously treated with raltegravir have not been fully established. Samples from HIV treatment-experienced patients entering a clinical trial of raltegravir treatment were analyzed using a parallel allele-specific sequencing (PASS) assay that assessed six primary and six secondary integrase mutations. Patients who achieved and sustained virologic suppression (success patients,n= 36) and those who experienced virologic rebound (failure patients,n= 35) were compared. Patients who experienced treatment failure had twice as many raltegravir-associated resistance mutations prior to initiating treatment as those who achieved sustained virologic success, but the difference was not statistically significant. The frequency of nearly all detected resistance mutations was less than 1% of viral population, and the frequencies of mutations between the success and failure groups were similar. Expansion of pre-existing mutations (one primary and five secondary) was observed in 16 treatment failure patients in whom minority resistant mutations were detected at baseline, suggesting that they might play a role in the development of drug resistance. Two or more mutations were found in 13 patients (18.3%), but multiple mutations were not present in any single viral genome by linkage analysis. Our study demonstrates that low-frequency primary RAL-resistant mutations were uncommon, while minority secondary RAL-resistant mutations were more frequently detected in patients naïve to raltegravir. Additional studies in larger populations are warranted to fully understand the clinical implications of these mutations.


2001 ◽  
Vol 47 (156) ◽  
pp. 37-50 ◽  
Author(s):  
Richard Bintanja ◽  
Carleen H. Reijmer

AbstractThis paper addresses the causes of the prevailing meteorological conditions observed over an Antarctic blue-ice area and their effect on the surface mass balance. Over blue-ice areas, net accumulation is zero and ablation occurs mainly through sublimation. Sublimation rates are much higher than over adjacent snowfields. The meteorological conditions favourable for high sublimation rates (warm, dry and gusty) are due to the specific orographic setting of this blue-ice area, with usually a steep upwind mountainous slope causing strong adiabatic heating. Diabatic warming due to radiation, and entrainment of warm air from aloft into the boundary layer augment the warming. The prevailing warm, dry conditions explain roughly 50% of the difference in sublimation, and the different characteristics of blue ice (mainly its lower albedo) the other 50%. Most of the annual sublimation (∼70%) takes place during the short summer (mainly in daytime), with winter ablation being restricted to occasional warm, dry föhn-like events. The additional moisture is effectively removed by entrainment and horizontal advection, which are maximum over the blue-ice area. Low-frequency turbulent motions induced by the upwind mountains enhance the vertical turbulent transports. Strong gusts and high peak wind speeds over blue-ice areas cause high potential snowdrift transports, which can easily remove the total precipitation, thereby maintaining zero accumulation.


1994 ◽  
Vol 366 ◽  
Author(s):  
Fouad M. Aliev

ABSTRACTWe performed dielectric spectroscopy measurements to study dynamics of collective modes of ferroelectric (FLC) and molecular motion of nematic (NLC) liquid crystals with polar molecules confined in silica macroporous and microporous glasses with average pore sizes of 1000 Å (volume fraction of pores 40%) and 100 Å (27%) respectively. For FLC the Goldstone and the soft modes are found in macropores. The rotational viscosity associated with the soft mode is about 10 times higher in pores than in the bulk. These modes are not detected in micropores although low frequency relaxation is present. The last one probably is not connected with the nature of liquid crystal but is associated with surface polarization effects typical for two component heterogeneous media. The difference between the dynamics of orientational motion of the polar molecules of NLC in confined geometries and in the bulk is qualitatively determined by the total energy Fs of the interaction between molecules and the surface of the pore wall, which is found Fs ≈ 102erg/cm2.


1991 ◽  
Vol 81 (4) ◽  
pp. 1101-1114
Author(s):  
Jerry A. Carter ◽  
Noel Barstow ◽  
Paul W. Pomeroy ◽  
Eric P. Chael ◽  
Patrick J. Leahy

Abstract Evidence is presented supporting the view that high-frequency seismic noise decreases with increased depth. Noise amplitudes are higher near the free surface where surface-wave noise, cultural noise, and natural (wind-induced) noise predominate. Data were gathered at a hard-rock site in the northwestern Adirondack lowlands of northern New York. Between 15- and 40-Hz noise levels at this site are more than 10 dB less at 945-m depth than they are at the surface, and from 40 to 100 Hz the difference is more than 20 dB. In addition, time variability of the spectra is shown to be greater at the surface than at either 335- or 945-m depths. Part of the difference between the surface and subsurface noise variability may be related to wind-induced noise. Coherency measurements between orthogonal components of motion show high-frequency seismic noise is more highly organized at the surface than it is at depth. Coherency measurements between the same component of motion at different vertical offsets show a strong low-frequency coherence at least up to 945-m vertical offsets. As the vertical offset decreases, the frequency band of high coherence increases.


Author(s):  
S. Tiguntsev

In classical physics, time is considered absolute. It is believed that all processes, regardless of their complexity, do not affect the flow of time The theory of relativity determines that the flow of time for bodies depends both on the speed of movement of bodies and on the magnitude of the gravitational potential. It is believed that time in space orbit passes slower due to the high speed of the spacecraft, and faster due to the lower gravitational potential than on the surface of the Earth. Currently, the dependence of time on the magnitude of the gravitational potential and velocity (relativistic effect) is taken into account in global positioning systems. However, studying the relativistic effect, scientists have made a wrong interpretation of the difference between the clock frequency of an orbiting satellite and the clock frequency on the Earth's surface. All further studies to explain the relativistic effect were carried out according to a similar scenario, that is, only the difference in clock frequencies under conditions of different gravitational potentials was investigated. While conducting theoretical research, I found that the frequency of the signal changes along the way from the satellite to the receiver due to the influence of Earth's gravity. It was found that the readings of two high-precision clocks located at different heights will not differ after any period of time, that is, it is shown that the flow of time does not depend on the gravitational potential. It is proposed to conduct full-scale experiments, during which some high-precision clocks are sent aboard the space station, while others remain in the laboratory on the surface of the earth. It is expected that the readings of the satellite clock will be absolutely identical to the readings of the clock in the Earth laboratory.


Blood ◽  
2001 ◽  
Vol 98 (2) ◽  
pp. 486-488 ◽  
Author(s):  
Masaki Yasukawa ◽  
Shiro Bando ◽  
Gottfried Dölken ◽  
Eiji Sada ◽  
Yoshihiro Yakushijin ◽  
...  

The incidence of follicular lymphoma differs significantly between white and Japanese individuals. Translocation between theBCL-2 and immunoglobulin heavy chain genes is detected in 85% to 90% of all follicular lymphomas in whites. Recently,BCL-2/JH translocation was detected in peripheral blood lymphocytes from more than 50% of healthy white individuals. To clarify the reason for the difference in incidence of follicular lymphoma between whites and Japanese, the frequency ofBCL-2/JH translocation in peripheral blood lymphocytes of healthy Japanese individuals was compared with that of German individuals. The prevalence of BCL-2/JHtranslocation in Japanese adults appeared to be significantly lower than that in German adults. The present data suggest that the low frequency of BCL-2/JH translocation in the Japanese general population may be one of the major reasons for the difference in incidence of follicular lymphoma between whites and Japanese.


Sign in / Sign up

Export Citation Format

Share Document