scholarly journals Effects of HfC Particles on Crack Initiation and Propagation Behavior of WC/Co Composites

Author(s):  
Xinyu Yan ◽  
Shouren Wang ◽  
Daosheng Wen ◽  
Gaoqi Wang ◽  
Wentao Liu

Tungsten carbide composites were prepared by cold-pressing and hot-pressing sintering; fracture toughness and bending strength of the specimens were tested. The microstructures of HfC/WC/Co composites were observed with the SEM. The mathematical models were established to investigate the relationship between stress intensity factors of crack straight-through, crack deflection, and crack bifurcation with crack length, based on the crack propagation energy release rate. The simulation software ABAQUS was used to verify the four crack propagation methods of crack straight-through, crack deflection, crack bifurcation and crack pinning. The simulation results show that adding appropriate amount of HfC can effectively improve the fracture toughness and bending strength of the composites. The homogeneous distribution of HfC and Co in the matrix has a significant effect on the improvement of the strength and toughness of the composites, and the improvement mechanism is to disperse or transfer the stress at the crack tip to HfC by crack deflection, crack bifurcation, crack pinning, transcrystalline fracture, etc. As a result, the stress concentration at the crack tip in the matrix is reduced, and the toughness of the composites is improved.

2005 ◽  
Vol 290 ◽  
pp. 175-182 ◽  
Author(s):  
Gurdial Blugan ◽  
Richard Dobedoe ◽  
I. Gee ◽  
Nina Orlovskaya ◽  
Jakob Kübler

Multi-layer laminates were produced using alternating layers of Si3N4 and Si3N4+TiN. The differences in the coefficient of thermal expansions between the alternating layers lead to residual stresses after cooling. These are compressive in the Si3N4 layers and tensile in the Si3N4+TiN layers. The existence of these stresses in the laminates effect the crack propagation behaviour during failure. Different designs of laminates were produced with external layers under compression and tension exhibiting different failure mechanisms. Facture toughness was measured by SEVNB method. In systems with external layers under compression the measured fracture toughness was up to three times that of Si3N4, i.e. up to 17 MPa m1/2. In systems with external layers under tension during failure the energy absorbing effects of crack deflection and crack bifurcation were obtained. High temperature tests were performed to determine the onset temperature for residual stresses in these laminates. Micro-laminates with compressive layers of only 30 µm thickness with high strength and fracture toughness and were manufactured.


2018 ◽  
Vol 57 (1) ◽  
pp. 54-62 ◽  
Author(s):  
S.V. Bobylev ◽  
A.G. Sheinerman

Abstract A model is proposed describing the effect of crack bridging on the fracture toughness of ceramic/graphene composites. The dependences of the fracture toughness on the graphene content and the sizes of the graphene platelets are calculated in the exemplary case of yttria stabilized zirconia (YSZ)/graphene composites. The calculations predict that if crack bridging prevails over crack deflection during crack growth, the maximum toughening can be achieved in the case of long graphene platelets provided that the latter do not rupture and adhere well to the matrix. The model shows good correlation with the experimental data at low graphene concentrations.


2006 ◽  
Vol 978 ◽  
Author(s):  
Silvester John Noronha ◽  
Nasr M Ghoniem

AbstractWe present a model for the brittle - ductile transition in heterogenous metallic materials based on two dimensional discrete dislocation simulations of crack-tip plasticity. The sum of elastic fields of the crack and the emitted dislocations defines an elasto-plastic crack field. Effects of crack-tip blunting of the macrocrack are included in the simulations. The plastic zone characteristics are found to be in agreement with continuum models, with the added advantage that the hardening behavior comes out naturally in our model. The present model is composed of a macrocrack with microcracks ahead of its tip. These microcracks represent potential fracture sites at internal inhomogenities, such as brittle precipitates. Dislocations that are emitted from the crack-tip account for plasticity. When the tensile stress at the microcrack situated along the crack plane attains a critical value over a distance fracture is assumed to take place. The brittle-ductile transition curve is obtained by determining the fracture toughness at various temperatures. Factors that contribute to the sharp upturn in fracture toughness with temperature are found to be: the decrease in tensile stress ahead of the crack tip due to increase in blunting, and the increase in dislocation mobility. The inherent scatter in fracture toughness measurements are studied by using a size distribution for microcracks, distributed on the crack plane of the macrocrack. The scatter in fracture toughness measurements is found to be an effect of the size distribution of microcracks rather than their spatial distribution on the matrix ahead of the crack plane. When compared, the obtained results are in agreement with the existing experimental data.


2013 ◽  
Vol 815 ◽  
pp. 233-239
Author(s):  
Xue Quan Liu ◽  
Cun Guang Ding ◽  
Chang Hai Li ◽  
Yi Li ◽  
Li Xin Li ◽  
...  

A fibrous monolith cemented carbide with WC-6Co as cell and WC-20Co as cell boundaries was produced through hot co-extrusion process in this paper. The density, hardness, bending strength and fracture toughness of the fibrous monolith cemented carbide were tested, and the fracture and crack propagation were observed by metalloscope and SEM. The results showed that the bending strength and fracture toughness of the fibrous monolith cemented carbides was remarkably improved 71.91% and 45.7% respectively, while the hardness was slightly decreased 1% compared with WC-6Co composites. It is the reason that the tougher shell WC-20Co with higher bending strength and fracture toughness can absorb more fracture energy, which can slow down and prevent the crack propagating from brittle core WC-6Co.


2013 ◽  
Vol 785-786 ◽  
pp. 533-536 ◽  
Author(s):  
Shi Bao Li ◽  
Yi Min Zhao ◽  
Jian Feng Zhang ◽  
Cheng Xie ◽  
Dong Mei Li ◽  
...  

A novel PMMA-ZrO2 composite (PZC) was prepared by resin infiltrated to ceramic method. The composite mechanical properties were evaluated and correlated to its microstructure. Partially sintered zirconia ceramics (PSZC) were made by isostatic pressing and partially sintering. Subsequently, the PZC was prepared by vacuum infiltrating prepolymerized MMA into PSZC, followed by in-situ polymerization. When PSZC-70% was used as the matrix, the bending strength, elastic modulus, and fracture toughness of the prepared composite i.e PZC-70% were 202.56±12.09 MPa, 58.71±3.98 GPa, and 4.60±0.26 MPa·m1/2, corresponding to 25.69%, 23.31%, and 169.01% improvement, respectively, in comparison with the control matrix. Among them, the fracture toughness improvement was the most prominent. According to SEM images of the fracture surfaces, each pore of zirconia skeleton was filled by organic resin contributing to the bending strength improvement. These weak interfaces between zirconia skeleton and organic resin absorbed energy and terminated the growth of microcracks which might be responsible for significant improvement in fracture toughness. This PZC material is anticipated to be a new member of the dental CAD/CAM family.


1994 ◽  
Vol 364 ◽  
Author(s):  
Fritz Appel ◽  
Uwe Lorenz ◽  
Tao Zhang ◽  
Richard Wagner

AbstractTitanium aluminides with a lamellar microstructure consisting of the intermetallic phases ֱ2 (Ti3Al) and γ(TiAl) suffer from brittleness at ambient temperatures but exhibit at the same time a relatively high fracture toughness. This discrepancy indicates particular processes stabilizing crack propagation in the lamellar microstructure. In this context, the toughening mechanisms were investigated in (α2 + γ) TiAl alloys which contained different volume fractions of lamellar colonies. The fracture toughness for crack propagation parallel or across the lamellar interfaces was estimated by using chevron-notched bending bars. Electron microscope studies were performed to characterize the related processes of crack tip plasticity. Special emphasis was paid to the crystallography of crack propagation and to the interaction of crack tips with lamellar interfaces. Accordingly, the lamellar morphology derives some of its toughness from interface-related processes which stabilize crack propagation by deflecting the crack tip and providing the necessary dislocation sources for crack tip shielding in the process zone ahead of the crack tip.


2011 ◽  
Vol 66-68 ◽  
pp. 1390-1396
Author(s):  
Jing Song Zhao ◽  
Yi Feng ◽  
Nan Nan Chen ◽  
Fan Yan Chen ◽  
Jie Chen ◽  
...  

The transmutation target of nuclear waste material has been fabrication by a powder metallurgy method by using Alumina as the matrix and CNTs as reinforcement. The effect of different nanotube contents on the fracture toughness and the bending strength was investigation. The results showed the fracture toughness and the bending strength of composites increased with increasing CNTs mass fraction when the content of CNTs was less than 1.5%. However, when the contents of CNTs greater than 1.5%, the fracture toughness and the bending strength of composites decreased as the content of CNTs increased. Possible mechanisms are discussed in detail in the paper.


2006 ◽  
Vol 313 ◽  
pp. 145-150 ◽  
Author(s):  
Jing Wang ◽  
Hua Min Kou ◽  
Yu Bai Pan ◽  
Jing Kun Guo

Carbon nanotube-mullite (Al2O3/SiO2=3/2) composites have been prepared by hot-pressing the corresponding composite powders, in which the multi-walled carbon nanotubes(1~10 vol%) are homogeneously dispersed between the mullite grains. The microstructure of the specimens has been studied and discussed in relation to the properties of the matrix, the bending strength and the fracture toughness, the dielectric constant and the dissipative factor. Carbon nanotube-mullite composites are potential electromagnetic wave absorbers owing to the percolation of the carbon nanotubes.


2008 ◽  
Vol 569 ◽  
pp. 97-100 ◽  
Author(s):  
Tao Zhang ◽  
Hai Yun Jin ◽  
Yong Ian Wang ◽  
Zhi Hao Jin

AlN/BN laminated ceramic composites were fabricated using tape-casting and hot-pressing by optimizing the designs of the structure and geometry of AlN/BN laminated ceramic composites. The results showed that the fracture toughness and bending strength for AlN/BN laminated ceramics reached 9.1MPa.m1/2 and 378MPa respectively. The fracture toughness is two times higher than that of AlN monolithic ceramics. The excellent fracture toughness of AlN/BN laminated ceramics could be mainly attributed to crack deflection, delaminating, branching, parallel propagation and crack laminate pilling out at the AlN/BN weak interface.


2010 ◽  
Vol 638-642 ◽  
pp. 3846-3851 ◽  
Author(s):  
Keijiro Hiraga ◽  
Koji Morita ◽  
Byung Nam Kim ◽  
Hidehiro Yoshida

In a high-purity 8Y-CSZ, the doping of 0.15 - 5 mass% pure silica introduces a glass phase dispersing uniformly along grain-boundary facets and at multiple junctions. For materials with grain sizes of 0.75 - 2.4 m, the dispersion of the glass phase decreases the elastic modulus, the Vickers hardness and the elastic modulus-to-hardness ratio, whereas it affects little in the fracture toughness measured by a Vickers-indentation method and a single-crack-precracked-beam method. Inspection of crack propagation paths shows that the glass phase with sizes smaller than those of the matrix grains is not a site for easy crack-propagation, but provides a site for a crack-deflection mechanism.


Sign in / Sign up

Export Citation Format

Share Document