scholarly journals Aerodynamic characteristics and flow field of delta wings with the canard

2018 ◽  
Vol 145 ◽  
pp. 03010
Author(s):  
Saya Mochizuki ◽  
Gouji Yamada

Now, many kinds of explorations for outer planets have been proposed around the world. Among them Mars attracts much attention for future exploration. Orbiters and landers have been used for Mars exploration. Recently as a new exploration method, the usage of an airplane has been seriously considered and there are some development projects for Mars airplane. However, the airplane flying on the Earth atmosphere cannot fly on the Mars atmosphere, because atmospheric conditions are much different each other. Therefore, we focused on the usage of the airplane with unfolding wings for Mars exploration. These unfolding wings are designed as delta wings. However, delta wings do not have enough aerodynamics characteristics in a low speed region. In this study, to improve the aerodynamic characteristics of delta wings, we have proposed the usage of canard wings. The purpose of this study is to examine the effectiveness of canard wings to improve aerodynamic characteristics in a low speed region. CFD analysis is performed using four wing models with different canard shapes. The result shows that the usage of canards is effective to improve aerodynamic characteristics of delta wings in a low speed region. In addition, increasing lift coefficient is possible by changing the shape of canards.

2019 ◽  
Vol 889 ◽  
pp. 434-439
Author(s):  
Ngoc Khanh Tran ◽  
Van Khang Nguyen ◽  
Phu Khanh Nguyen ◽  
Thi Kim Dung Hoang ◽  
Van Quang Dao

This paper aims to estimate the effect of turbulent inlet flow to vortices on Delta wing with four different turbulence intensity from 0.5% to 15% and the effect of taper ratios to aerodynamic characteristics of Delta wings with four taper ratios: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The main purpose of this paper is to find out the formation, development, and breakdown of vortices on Delta wings when changing taper ratios and turbulence intensity thence determining the center of vortices with the range of attack angles from 5o to 40o in low velocities about 2.5 m/s. This research uses Delta wing models with a 40o swept-back leading edge, the root chord length 150 mm, and a thickness 5 mm. The problem is simulated by using ANSYS fluent and experiment in the subsonic wind tunnel to compare and validate results. The Delta wing models are meshed by using ICEM to improve the mesh quality and using the turbulence model for low Reynolds number flows Transition SST (4 equations) to calculate aerodynamic characteristics such as lift coefficient, drag coefficient, pressure coefficient... find the paths which connect centers of the vortices, and show the contours of pressures and velocities to evaluate the change of centers of the vortices. The results showed that the two vortices grow up and tend to move inward when the attack angle increase, the vortices are broken strongly in high attack angles, the aerodynamic quality of Delta wings change insignificantly when changing turbulent intensity at inlet. This research also carried out that the stall angle increase when increasing the taper ratio.


Author(s):  
ZH Yuan ◽  
SY Guo ◽  
SN Zhang ◽  
JQ Zhao ◽  
WJ Lu ◽  
...  

Based on the suspension of a missile using folding rotary wings and airbags, in order to improve the basic parameters and motion characteristics of the rotor during the unfolding process and analyze the aerodynamic characteristics of the entire device in the suspension state, after proposing a scheme of double-spin mechanism, the main folding and unfolding mechanism, initial driving device, rotating driving device, and locking mechanism were designed, and the simulation research is studied by the Automatic Dynamic Analysis of Mechanical System and Ansys Fluent Fluid Simulation software, respectively. The results show that the rotation rate was controlled at 41.8 mm/s, the various motion parameters are reasonable, and the operation process is relatively smooth, with high reliability. The speed and pressure value at the tip of the rotor are higher and the aerodynamic disturbance is obvious, which has a great influence on the aerodynamic performance. The speed and pressure distribution of the surrounding flow field is stable, the lift provided is 46 N, and the lift coefficient is 0.55, which can ensure the long-time suspension state of the missile. This paper puts forward a valuable design idea and has practical reference value for the research of the suspended missile.


Author(s):  
Alexander Führing ◽  
Subha Kumpaty ◽  
Chris Stack

In external and internal fluid flow analysis using numerical methods, most attention is paid to the properties of the flow assuming absolute rigidity of the solid bodies involved. However, this is often not the case for water flow or other fluids with high density. The pressure forces cause the geometry to deform which in turn changes the flow properties around it. Thus, a one-way and two-way Fluid-Structure Interaction (FSI) coupling is proposed and compared to a CFD analysis of a windsurfing fin in order to quantify the differences in performance data as well as the properties of the flow. This leads to information about the necessity of the use of FSI in comparison to regular CFD analysis and gives indication of the value of the enhanced results of the deformable analysis applied to water flow around an elastically deformable hydrofoil under different angles of attack. The performance data and flow property evaluation is done in ANSYS Fluent using the k-ω SST and k-ε model with a y+ of 1 and 35 respectively in order to be able to compare the behavior of both turbulence models. It is found that the overall lift coefficient in general is lower and that the flow is less turbulent because of softer transition due to the deformed geometry reducing drag forces. It is also found that the deformation of the tip of the hydrofoil leads to vertical lift forces. For the FSI analysis, one-way and two-way coupling were incorporated leading to the ability to compare results. It has been found that one-way coupling is sufficient as long as there is no stall present at any time.


Author(s):  
Александр Анатольевич Дектерев ◽  
Артем Александрович Дектерев ◽  
Юрий Николаевич Горюнов

Исследование направлено на разработку и апробацию методики численного моделирования аэродинамических и энергетических характеристик циклоидального ротора. За основу взята конфигурация ротора IAT21 L3. Для нее с использованием CFD-пакета ANSYS Fluent построена математическая модель и выполнен расчет. Проанализировано влияние скорости набегающего потока воздуха на движущийся ротор. Математическая модель и полученные результаты исследования могут быть использованы при создании летательных аппаратов с движителями роторного типа. This article addresses the study of the aerodynamic and energy characteristics of a cycloidal rotor subject to the influence of the incoming flow. Cycloidal rotor is one of the perspective devices that provide movement of aircrafts. Despite the fact that the concept of a cycloidal rotor arose in the early twentieth century, the model of a full-scale aircraft has not been yet realized. Foreign scientists have developed models of aircraft ranging in weight from 0.06 to 100 kg. The method of numerical calculation of the cycloidal rotor from the article [1] is considered and realized in this study. The purpose of study was the development and testing of a numerical simulation method for the cycloidal rotor and study aerodynamic and energy characteristics of the rotor in the hovering mode and under the influence of the oncoming flow. The aerodynamic and energy characteristics of the cycloidal rotor, rotating at a speed of 1000 rpm with incoming flow on it with velocities of 20-80 km/h, were calculated. The calculation results showed a directly proportional increase of thrust with an increase of the incoming on the rotor flow velocity, but the power consumed by the rotor was also increased. Increase of the incoming flow velocity leads to the proportional increasing of the lift coefficient and the coefficient of drag. Up to a speed of 80 km/h, an increase in thrust and power is observed; at higher speeds, there is a predominance of nonstationary effects and difficulties in estimating the aerodynamic characteristics of the rotor. In the future, it is planned to consider the 3D formulation of the problem combined with possibility of the flow coming from other sides.


Author(s):  
C. P. van Dam ◽  
C. Bauer ◽  
D. T. Yen Nakafuji

Micro-electro-mechanical (MEM) translational tabs are introduced for active lift control on aircraft. These tabs are mounted near the trailing edge of lifting surfaces such as aircraft wings and tails, deploy approximately normal to the surface, and have a maximum deployment height on the order of one percent of the section chord. Deployment of the tab effectively changes the sectional camber, thereby changing the aerodynamic characteristics of a lifting surface. Tabs with said deployment height generate a change in the section lift coefficient of approximately ±0.3. The microtab design and the techniques used to fabricate and test the tabs are presented.


2015 ◽  
Vol 798 ◽  
pp. 596-601
Author(s):  
R.F. Francisco Reis ◽  
Guilherme A. Santana ◽  
Paulo Iscold ◽  
Carlos A. Cimini

This paper will present the development of a simple subsonic boundary layer method suitable to be used coupled with panel methods in order to estimate the aerodynamic characteristics, including viscous drag and maximum lift coefficient, of 3D wings. The proposed method does not require viscous-inviscid iterations and is based on classical integral bi-dimensional boundary layer theory using Thwaites and Head ́s models with bi-dimensional empirical corrections applied to each wing strip being therefor robust and efficient to be used in the early conceptual stage of aircraft design. Presented results are compared to the Modified CS Method in an IBL scheme and experimental data and are shown to provide good results.


2013 ◽  
Vol 712-715 ◽  
pp. 1307-1311
Author(s):  
Lin Lin Wang ◽  
Ge Gao

The saucer-shaped aircraft is a novel aircraft adopting blend-wing-body configuration. The linear perturbation theory based on the classic flight dynamics was used to analyze the longitudinal, lateral and directional flight qualities of the saucer-shaped aircraft under low speed conditions. The flight qualities were given. Meanwhile the aerodynamic characteristics of the saucer-shaped aircraft, the conventional aircraft and the flying wing aircraft were also contrasted to discuss their similarities and differences. The results show that the saucer-shaped aircraft has stable longitudinal mode, rollover mode and Dutch roll mode. The spiral mode is unstable. The saucer-shaped aircraft exhibits superior flight qualities and excellent comprehensive performances.


Sign in / Sign up

Export Citation Format

Share Document