scholarly journals Hybrid Latex Particles: Preparation with Miniemulsion Polymerization

2018 ◽  
Vol 149 ◽  
pp. 01035 ◽  
Author(s):  
F. Bouanani

This research developed a novel poly(trifluoropropylmethylsiloxane) (PTMS)/montmorillonite nanoparticles, for technologic applications. PTMS /MMT nanoparticles were prepared by the miniemulsion polymerization method. Montmorillonite clay was encapsulated within a fluorinated cyclosiloxane (1,3,5-tris(trifluoropropylmethyl)cyclotrisiloxane) to give stable water based nanocomposite latex, using miniemulsion polymerization technique. The resulting composite latex was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and RX diffraction. The particles stability was investigated by sedimentation and surface tension measurements. An efficient cationic/nonionic surfactant mixture was used in order to achieve the best compatibility with the monomer. TEM and RX data revealed the partial embedding of montmorillonite in the spherical polymer based nanoparticles. According to DLS measurements, the encapsulated clay particles conserve their size throughout the polymerization process. The melt processing of poly(trifluoropropylmethylsiloxane) matrix to encapsulate the montmorillonite clay was also carried out for comparison purposes.

2012 ◽  
Vol 463-464 ◽  
pp. 527-532
Author(s):  
Hussein M. Etmimi ◽  
Ronald D. Sanderson

The synthesis of polystyrene/GO (PS-GO) nanocomposites using the reversible addition-fragmentation chain transfer (RAFT) mediated polymerization method is described. The GO was synthesized and immobilized with a RAFT agent to afford RAFT-functionalized GO nanosheets. The RAFT-immobilized GO was used for the synthesis of PS nanocomposites in a controlled manner using miniemulsion polymerization. The moelcular weight and dispersity of the PS in the nanocomposites depended on the amount of RAFT-grafted GO in the system, in accordance with the features of the RAFT-mediated polymerization. X-ray diffraction and transmission electron microscopy analyses revealed that the nanocomposites had exfoliated morphology, even at relatively high GO content. The thermal stability and mechanical properties of the PS-GO nanocomposites were better than those of the neat PS polymer. Furthermore, the mechanical properties of the nanocomposites were dependent on the RAFT grafted GO content.


2011 ◽  
Vol 236-238 ◽  
pp. 2024-2027 ◽  
Author(s):  
He Tang Zheng ◽  
Yue Zhang ◽  
Dao Wei Huang

We reported here a novel procedure for preparing 2.5% beta cypermethrin/polyacrylate nanocapsules using miniemulsion polymerization method, in which formulation the stearic acid (SD) as assistant stabilizer and fatty alcohol-polyoxyethylene ether (n=9) sodium sulfate (AES) as emulsifier. The nanocapsules were characterized by IR, UV, transmission electron microscopy (TEM), laser particle size analyzer and TGA. It proves that beta cypermethrin nanocapsules have uniform size and core-shell structure, and the mean size is 49.1 nm. The encapsulation efficiency of nanocapsules is 84.6% and the loading capacity of nanocapsules is 13.4%. The analysis of FTIR and UV show there are no toxic organic solvent and benzene adjuvant existing in the formulation, therefore, the nanocapsule is eco-friendly. TGA analysis indicates the nanocapsule possesses release-controlled performance and could extend the duration.


2017 ◽  
Vol 4 (11) ◽  
pp. 170844 ◽  
Author(s):  
Sheng Gong ◽  
Huayao Chen ◽  
Xinhua Zhou ◽  
Sundaram Gunasekaran

We have synthesized core-shell structured 3-methacryloxypropyltrimethoxysilane (MPS) functionalized antimony-doped tin oxide nanoparticles (MANs)–poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-BA, PMB) nanocomposite latex particles via miniemulsion polymerization method. Polymerizable anionic surfactant DNS-86 (allyloxy polyoxyethylene(10) nonyl ammonium sulfate) was first introduced to synthesize core-shell nanocomposite. The morphologies of synthesized MANs and MANs/PMB latex nanocomposite particles were studied with transmission electron microscopy, which revealed particles, on average 70 nm in size, with a core-shell structure. Owing to the uniformity and hydrophobicity of MANs, the MANs-embedded PMB latex nanocomposite can be tailored more precisely than other nanoparticles-embedded nanocomposites. Films incorporating 10 wt% of MANs in the MAN/PMB latex nanocomposite exhibit good transmittance in the visible region, and excellent opacity in the near infrared region. The MANs/PMB nanocomposite film also appears suitable for heat insulation applications.


2006 ◽  
Vol 306-308 ◽  
pp. 1091-1096 ◽  
Author(s):  
Yang Soo Kim ◽  
David Sudol ◽  
Victoria Dimonie ◽  
Mohammed El-Aasser

Hollow polystyrene nanocapsules with sizes of ~100 nm have been prepared via a miniemulsion polymerization process by applying the encapsulation of a nonsolvent (i.e., isooctane). Divinylbenzene has been added to styrene as a cross-linking comonomer in order to improve a structural stability of the hollow polymer capsules. Morphology variation of nanocapsules with concentrations of divinylbenzene and also isooctane has been studied using transmission electron microscopy analysis. Kinetic study on the miniemulsion polymerization of styrene in the presence of divinylbenzene and isooctane has been carried out using fractional conversion data determined by the gravimetric analysis.


2021 ◽  
pp. 096739112110245
Author(s):  
Amrita Sharma ◽  
PP Pande

It has been observed that acrylate monomers are very difficult to polymerize with the low cost nitroxide catalyst 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO). Therefore, costly acyclic nitroxides such as N-tert-butyl-N-(1-diethylphosphono-2,2-dimethyl)-N-oxyl, (SG1), 2,2,5-Trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) and TIPNO derivatives have to be used for the polymerization of the acrylic acid derivatives. There are very few reports on the use of TEMPO-derivatives toward the polymerization of n-butyl acrylate. Generally different reducing agents viz. glucose, ascorbic acid, hydroxyacetone etc. have been used to destroy excess TEMPO during the polymerization reaction. The acrylate polymerizations fail in the presence of TEMPO due to the strong C–O bond formed between the acrylate chain end and nitroxide. To the best of our knowledge, no literature report is available on the use of TEMPO without reducing agent or high temperature initiators, toward the polymerization of n-butyl acrylate. The present study has been carried out with a view to re-examine the application of low cost nitroxide TEMPO, so that it can be utilized towards the polymerization of acrylate monomers (e.g. n-butyl acrylate). We have been able to polymerize n-butyl acrylate using the nitroxide TEMPO as initiator (via a macroinitiator). In this synthesis, a polystyrene macroinitiator was synthesized in the first step from TEMPO, after this TEMPO end-capped styrene macroinitiator (PSt-TEMPO) is used to polymerize n-butyl acrylate monomer. The amount of macroinitiator taken was varied from 0.05% to 50% by weight of n-butyl acrylate monomer. The polymerization was carried out at 120°C by bulk polymerization method. The experimental findings showed a gradual increase in molecular weight of the polymer formed and decrease in the polydispersity index (PDI) with increase in amount of PSt-TEMPO macroinitiator taken. In all experiments conversion was more than 80%. These results indicate that the polymerization takes place through controlled polymerization process. Effect of different solvents on polymerization has also been investigated. In the following experiments TEMPO capped styrene has been used as macroinitiator leading to the successful synthesis of poly n-Butyl acrylate. It has been found that styrene macroinitiator is highly efficient for the nitroxide mediated polymerization, even in very small concentration for the synthesis of poly n-butyl acrylate. High concentration of macroinitiator results in the formation of block copolymers of polystyrene and poly ( n-butyl acrylate) viz. polystyrene-block-poly-( n-butyl acrylate). The use of TEMPO toward controlled polymerization is of much importance, because it is the nitroxide commercially available at the lowest cost.


RSC Advances ◽  
2019 ◽  
Vol 9 (15) ◽  
pp. 8184-8196 ◽  
Author(s):  
Jingshui Xu ◽  
Lihua Cheng ◽  
Zhong Zhang ◽  
Ling Zhang ◽  
Cen Xiong ◽  
...  

Highly exfoliated montmorillonite (MMT) clay reinforced thermoplastic polyurethane elastomers (TPUs) were prepared by anin situsolution polymerization method.


2005 ◽  
Vol 38 (10) ◽  
pp. 4183-4192 ◽  
Author(s):  
Mei Li ◽  
Eric S. Daniels ◽  
Victoria Dimonie ◽  
E. David Sudol ◽  
Mohamed S. El-Aasser

In-situ Polypyrrole (PPy) coating was performed on the surface of LixFePO4 /C (x=0.95 to 1.20) particles using iron (III) tosylate as oxidizer. The composite material LixFePO4 /C (x=0.95 to 1.20) was synthesized by two step method. FePO4 /polyaniline particles were first synthesized by chemical precipitation and were further heat treated with lithium acetate and sucrose under reduced atmosphere. XRD pattern confirms that Li+ addition to LiFePO4 has increased interplaner spacing and of the unit cell size. Impurity phase appears with x=1.15 and 1.20 which further disappears after polymer coating. After polymerization process the XRD pattern shows Li0.05FePO4 and LiFePO4 phases and both the phases have same electrochemical behavior. Morphology of the LixFePO4 /C and LixFePO4 /C-PPy was studied by using FE-SEM and it was found that particles are spherical with size range below 200nm. Transmission Electron Microscope (TEM) also confirms that LixFePO4 /C isolated particles were well encapsulated within the polymer matrix


Author(s):  
Hui Wang ◽  
Letian Wang ◽  
Shanyu Meng ◽  
Hanxue Lin ◽  
Melanie Correll ◽  
...  

The compatibility of graphene or graphene oxide with its dispersion medium (polymer) plays a critical role in the formation nanocomposite materials with significant property improvements. Environmentally friendly miniemulsion polymerization, which allows a formation of nanoencapsulation in an aqueous phase and high molecular weight polymer/composite production is one promising method. In this study, we screened a series of amphiphilic modifiers and found that the quaternary ammonium (ar-vinyl benzyl) trimethyl ammonium chloride (VBTAC) pending carbon double bonds could effectively modify the graphene oxide (GO) to be compatible with the organophilic monomer. After that, free radical miniemulsion polymerization could successfully synthesize stable latex of exfoliated poly (methyl methacrylate) (PMMA)/ GO nanocomposite. The final latex had an extended storage life and a relatively uniform particle size distribution. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) analysis of this latex and its films indicated successful encapsulation of exfoliated nano-dimensional graphene oxide inside a polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document