scholarly journals Assessing Bioinspired Topographies for their Antifouling Potential Control Using Computational Fluid Dynamics (CFD)

2018 ◽  
Vol 152 ◽  
pp. 02004 ◽  
Author(s):  
Jacky Ling ◽  
Felicia Wong Yen Myan

Biofouling is the accumulation of unwanted material on surfaces submerged or semi submerged over an extended period. This study investigates the antifouling performance of a new bioinspired topography design. A shark riblets inspired topography was designed with Solidworks and CFD simulations were antifouling performance. The study focuses on the fluid flow velocity, the wall shear stress and the appearance of vortices are to be noted to determine the possible locations biofouling would most probably occur. The inlet mass flow rate is 0.01 kgs-1 and a no-slip boundary condition was applied to the walls of the fluid domain. Simulations indicate that Velocity around the topography averaged at 7.213 x 10-3 ms-1. However, vortices were observed between the gaps. High wall shear stress is observed at the peak of each topography. In contrast, wall shear stress is significantly low at the bed of the topography. This suggests the potential location for the accumulation of biofouling. Results show that bioinspired antifouling topography can be improved by reducing the frequency of gaps between features. Linear surfaces on the topography should also be minimized. This increases the avenues of flow for the fluid, thus potentially increasing shear stresses with surrounding fluid leading to better antifouling performance.

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Anthony J. Gannon ◽  
Garth V. Hobson ◽  
Michael J. Shea ◽  
Christopher S. Clay ◽  
Knox T. Millsaps

This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.


1994 ◽  
Vol 116 (3) ◽  
pp. 645-649 ◽  
Author(s):  
Josef Daniel Ackerman ◽  
Louis Wong ◽  
C. Ross Ethier ◽  
D. Grant Allen ◽  
Jan K. Spelt

We present a Preston tube device that combines both total and static pressure readings for the measurement of wall shear stress. As such, the device facilitates the measurement of wall shear stress under conditions where there is streamline curvature and/or over surfaces on which it is difficult to either manufacture an array of static-pressure taps or to position a single tap. Our “Preston-static” device is easily and conveniently constructed from commercially available regular and side-bored syringe needles. The pressure difference between the total pressure measured in the regular syringe needle and the static pressure measured in the side-bored one is used to determine the wall shear stress. Wall shear stresses measured in pipe flow were consistent with independently determined values and values obtained using a conventional Preston tube. These results indicate that Preston-static tubes provide a reliable and convenient method of measuring wall shear stress.


2000 ◽  
Vol 123 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Sujata Prakash ◽  
C. Ross Ethier

Computational techniques are widely used for studying large artery hemodynamics. Current trends favor analyzing flow in more anatomically realistic arteries. A significant obstacle to such analyses is generation of computational meshes that accurately resolve both the complex geometry and the physiologically relevant flow features. Here we examine, for a single arterial geometry, how velocity and wall shear stress patterns depend on mesh characteristics. A well-validated Navier-Stokes solver was used to simulate flow in an anatomically realistic human right coronary artery (RCA) using unstructured high-order tetrahedral finite element meshes. Velocities, wall shear stresses (WSS), and wall shear stress gradients were computed on a conventional “high-resolution” mesh series (60,000 to 160,000 velocity nodes) generated with a commercial meshing package. Similar calculations were then performed in a series of meshes generated through an adaptive mesh refinement (AMR) methodology. Mesh-independent velocity fields were not very difficult to obtain for both the conventional and adaptive mesh series. However, wall shear stress fields, and, in particular, wall shear stress gradient fields, were much more difficult to accurately resolve. The conventional (nonadaptive) mesh series did not show a consistent trend towards mesh-independence of WSS results. For the adaptive series, it required approximately 190,000 velocity nodes to reach an r.m.s. error in normalized WSS of less than 10 percent. Achieving mesh-independence in computed WSS fields requires a surprisingly large number of nodes, and is best approached through a systematic solution-adaptive mesh refinement technique. Calculations of WSS, and particularly WSS gradients, show appreciable errors even on meshes that appear to produce mesh-independent velocity fields.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250045 ◽  
Author(s):  
JIAXING QI ◽  
YANHONG ZHOU ◽  
DONGFANG WANG ◽  
LIANG ZHONG

Computational fluid dynamics (CFD) simulations of the flow in an axial blood pump with different blade heights (BH150, BH200 and BH250) were performed in the present study. The flow in the pump was assumed as steady and turbulent, and blood was treated as incompressible and Newtonian fluid. The flow rate increased with the rise in blade heights. At the impeller rotating speed of 20,000 rpm and a pressure of 100 mm Hg, the pump produces a flow rate up to 5 L/min in BH200 and BH250 models. The reverse flow and vortices have been identified in the BH150 and BH200 models in the outlet regions, but not for BH250 model. The high shear stress of the flow in the pump mainly occurred at the blade tips. The BH200 model achieved an expected flow rate up to 5 L/min with 90% of the shear stresses less than 500 Pa and the exposure time less than 22 ms, which has the acceptable shear stress level in the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Mongkol Kaewbumrung ◽  
Somsak Orankitjaroen ◽  
Pichit Boonkrong ◽  
Buraskorn Nuntadilok ◽  
Benchawan Wiwatanapataphee

A mathematical model of dispersed bioparticle-blood flow through the stenosed coronary artery under the pulsatile boundary conditions is proposed. Blood is assumed to be an incompressible non-Newtonian fluid and its flow is considered as turbulence described by the Reynolds-averaged Navier-Stokes equations. Bioparticles are assumed to be spherical shape with the same density as blood, and their translation and rotational motions are governed by Newtonian equations. Impact of particle movement on the blood velocity, the pressure distribution, and the wall shear stress distribution in three different severity degrees of stenosis including 25%, 50%, and 75% are investigated through the numerical simulation using ANSYS 18.2. Increasing degree of stenosis severity results in higher values of the pressure drop and wall shear stresses. The higher level of bioparticle motion directly varies with the pressure drop and wall shear stress. The area of coronary artery with higher density of bioparticles also presents the higher wall shear stress.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Patrick Weidman

The problem of stagnation-point flow impinging radially on a linearly twisting cylinder is considered. This advances previous work on the motion outside a cylinder undergoing linear torsional motion. The problem is governed by a Reynolds number R and a dimensionless torsion rate σ. Numerical calculations are carried out using the ODEINT program, and convergence of the shooting method is obtained using the MNEWT program. The radial and azimuthal wall shear stresses are found over a range of R and σ, and radial and azimuthal velocity profiles at σ={0,1,2} are presented for various values of R. The interesting feature is that the axial wall shear stress parameter f″(1) is a very weak function of σ while the azimuthal wall shear stress parameter g′(1) is a strong function of σ although both stress parameters are a strong function of R.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
F. P. P. Tan ◽  
G. Soloperto ◽  
S. Bashford ◽  
N. B. Wood ◽  
S. Thom ◽  
...  

In this study, newly developed two-equation turbulence models and transitional variants are employed for the prediction of blood flow patterns in a diseased carotid artery where the growth, progression, and structure of the plaque at rupture are closely linked to low and oscillating wall shear stresses. Moreover, the laminar-turbulent transition in the poststenotic zone can alter the separation zone length, wall shear stress, and pressure distribution over the plaque, with potential implications for stresses within the plaque. Following the validation with well established experimental measurements and numerical studies, a magnetic-resonance (MR) image-based model of the carotid bifurcation with 70% stenosis was reconstructed and simulated using realistic patient-specific conditions. Laminar flow, a correlation-based transitional version of Menter’s hybrid k‐ϵ∕k‐ω shear stress transport (SST) model and its “scale adaptive simulation” (SAS) variant were implemented in pulsatile simulations from which analyses of velocity profiles, wall shear stress, and turbulence intensity were conducted. In general, the transitional version of SST and its SAS variant are shown to give a better overall agreement than their standard counterparts with experimental data for pulsatile flow in an axisymmetric stenosed tube. For the patient-specific case reported, the wall shear stress analysis showed discernable differences between the laminar flow and SST transitional models but virtually no difference between the SST transitional model and its SAS variant.


Author(s):  
Matt Royer ◽  
Jane H. Davidson ◽  
Lorraine F. Francis ◽  
Susan C. Mantell

This paper presents an analytical model and experimental study of adhesion and fluid shear removal of calcium carbonate scale on polypropylene and copper tubes in laminar and turbulent water flows, with a view toward understanding how scale can be controlled in solar absorbers and heat exchangers. The tubes are first coated with scale and then inserted in a flow through apparatus. Removal is measured gravimetrically for Reynolds numbers from 525 to 5550, corresponding to wall shear stresses from 0.16 to 6.0 Pa. The evolutionary structure of the scale is visualized with scanning electron microscopy. Consistent with the predictive model, calcium carbonate is more easily removed from polypropylene than copper. In a laminar flow with a wall shear stress of 0.16 Pa, 65% of the scale is removed from polypropylene while only 10% is removed from copper. Appreciable removal of scale from copper requires higher shear stresses. At Reynolds number of 5500, corresponding to a wall shear stress of 6.0 Pa, 30% of the scale is removed from the copper tubes. The results indicate scale will be more easily removed from polypropylene, and by inference other polymeric materials, than copper by flushing with water.


1997 ◽  
Vol 3 (5) ◽  
pp. 333-342 ◽  
Author(s):  
P.J. Halliday ◽  
A.C. Smith

Potato starch and potato granules are materials that are often used in extrusion processes. It is important to quantify their rheology for modelling and prediction of process performance. The compaction behaviour of potato starch was examined at water contents of 4-18% wwb (wet weight basis) for pressures between 1 and 85 MPa. The Heckel deformation stress decreased as the water content increased up to 12% but became inaccurate at 18%. This decrease agreed qualitatively with other observations of the decrease in stiffness of starchy materials over this water content range. Potato granules were examined at water contents of 25-45% wwb and aspects of their rheo logical behaviour characterized using different approaches. A first approximation used the shear viscosity-shear rate power law which produced a law exponent for the resulting pastes (0.1-0.2). The classical Benbow equation was used to estimate yield and wall shear stresses in capillary flow. The latter indicates the presence of slip which was examined more fully as a function of wall shear stress. The Mooney technique was used together with a variation of the method where the shear rate for each die was subtracted from that for a non-slip flow, which was approximated using rough dies. A critical wall shear stress for slip was found to be 0.05-0.1 MPa, making it consistent with published results for other materials.


2010 ◽  
Vol 48 (4) ◽  
pp. 394-400
Author(s):  
X.B. Chen ◽  
S.C. Leong ◽  
H.P. Lee ◽  
V.F.H. Chong ◽  
D.Y. Wang

BACKGROUND: Turbinate reduction surgery may be indicated for inferior turbinate enlargement when conservative treatment fails. The aim of this study was to evaluate the effects of inferior turbinate surgery on nasal aerodynamics using computational fluid dynamics (CFD) simulations. METHODS: CFD simulations were performed for the normal nose, enlarged inferior turbinate and following three surgical procedures: (1) resection of the lower third free edge of the inferior turbinate, (2) excision of the head of the inferior turbinate and (3) radical inferior turbinate resection. The models were constructed from MRI scans of a healthy human subject and a turbulent flow model was used for the numerical simulation. The consequences of the three turbinate surgeries were compared with originally healthy nasal model as well as the one with severe nasal obstruction. RESULTS: In the normal nose, the bulk of streamlines traversed the common meatus adjacent to the inferior and middle turbinate in a relatively vortex free flow. When the inferior turbinate was enlarged, the streamlines were directed superiorly at higher velocity and increased wall shear stress in the nasopharynx. Of the three surgical techniques simulated, wall shear stress and intranasal pressures achieved near-normal levels after resection of the lower third. In addition, airflow streamlines and turbulence improved although it did not return to normal conditions. As expected, radical turbinate resection resulted in intra-nasal aerodynamics of atrophic rhinitis demonstrated in previous CFD studies. CONCLUSION: There is little evidence that inspired air is appropriately conditioned following radical turbinate surgery. Partial reduction of the hypertropic turbinate results in improved nasal aerodynamics, which was most evident following resection of the lower third. The results were based on a single individual and cannot be generalised without similar studies in other subjects.


Sign in / Sign up

Export Citation Format

Share Document