scholarly journals Sertanejo biodigestor: a social technology, an alternative source of energy

2021 ◽  
Vol 56 (4) ◽  
pp. 630-642
Author(s):  
Reginaldo Alves De Souza ◽  
Marília Regina Costa Castro Lyra ◽  
Renata Maria Caminha M. de O. Carvalho ◽  
José Coelho de Araújo Filho

The use of biogas as an alternative to using liquefied petroleum gas (LPG) for cooking food in the context of family farming is something recent and has ample room for growth. The aim of this study was to evaluate the use of the Sertanejo biodigester by farming families as a social technology for cooking gas production, as well as an alternative energy source. It also aimed to identify elements which contribute to disseminating this technology as an alternative to the use of firewood, charcoal and LPG. Quali-quantitative approaches were used following the exploratory method, with interviews and non-probabilistic sampling. A population with 132 units of biodigesters in the Agreste mesoregion of the State of Pernambuco was considered, with 83 interviews being collected. The results indicated that the Sertanejo biodigester social technology provides an increase in the income of farming families, avoids the use of firewood and charcoal for cooking food and produces biofertilizer for crops. They also showed that its non-continuous use or deactivation is related to a lack of raw material and the need for maintenance. Given this scenario, its implementation must consider the availability of a raw material source in the production unit and the potential for biogas production from the existing herd and consumption demand. It is recommended to strengthen arguments of economic and environmental impact for low-income families to disseminate this technology; to encourage the use of biogas associated with other activities in the production system; and to incorporate biodigestor social technology in rural credit financing lines.

2018 ◽  
Vol 156 ◽  
pp. 03043 ◽  
Author(s):  
Bakti Jos ◽  
Hanif Farhan ◽  
Nadia Dwi Ayu ◽  
Budiyono ◽  
Siswo Sumardiono

The crucial problem facing the world today is energy resources. Waste production of palm oil fruit bunch potentially produce as renewable energy resource. Palm oil fruit bunch contains 44% cellulose, 18% lignin and 34% hemicellulose. Organic carbon source is contained in biomass potentially produce biogas. Biogas is one of alternative energy, which is environmentally friendly and has been widely developed. This research is aimed to examine the effect of pretreatment in raw material of waste palm oil fruit bunch for the production of biogas, the effect of time, ratio C/N, and effect of microbial consortium. The variables are total solid (TS) used 10% and 18% with a 40 mesh physical pretreatment, chemical pretreatment with NaOH 8% gr / gr TS, and biology 5% g/vol with microbial consortium. Biogas production process was conducted over 2 months in room temperature, the test response quantitative results in the form of biogas volume every 2 days and also flame test. The result of this research shows that the highest daily production rate of biogas obtained from this study was 5,73 ml/gr TS and the highest biogas production accumulation generated at 58,28 ml/gr TS produced through a 40 mesh sieve of waste oil palm empty fruit bunch, immersion in NaOH, through solid state fermentation and C/N 30. From this research, it can be concluded that the optimum production of biogas formation occurs with the value of C/N 30, physical and biological pretreatment, and solid state method.


1970 ◽  
Vol 11 ◽  
pp. 167-172 ◽  
Author(s):  
Harka Man Lungkhimba ◽  
Amrit Bahadur Karki ◽  
Jagan Nath Shrestha

This study focuses on production of biogas as an alternative energy by using biodegradable wastes (BWs) in view of solving waste management at household level. The research was conducted on ARTI model compact biogas plant of 1 m3 digester and 0.75 m3 gasholder in focusing the management of daily collected biodegradable wastes (1-2 kg) produced from households. Both laboratory and field analyses were carried out. Methane content in biogas was determined by Biogas Analyzer Gas Board-3200P. Average maximum of about 235 l gas was recorded per day with corresponding to 65 min/day burning hour with the gas flame of energy value 1.55 MJ/h. According to the plant owners, the burning period of the gas was approximately 2 h/day during the spring and pre-monsoon seasons. The average gas production (per kg) from fresh waste materials was approximately 60 l. The use of high moisture containing cellulosic waste materials and incomplete digestion due to lower digester temperature were the major causes of lower gas yield. The proportion of methane exceeded by carbondioxide in the beginning but then after gradually methane exceeded carbondioxide and reached 56.43% on an average. Although fertilizer value in terms of NPK increased gradually but it remained below 1% except K, which was found to be 1.22%. Simple payback periods of 4.81, 7.57 and 7.20 years were found in kerosene, firewood, and LPG substitutions respectively. Key words: alternative energy; biogas analyzer; compact biogas plant; methane; simple payback period DOI: 10.3126/njst.v11i0.4140Nepal Journal of Science and Technology 11 (2010) 167-172


2020 ◽  
Vol 181 ◽  
pp. 01006
Author(s):  
Ambar Pertiwiningrum ◽  
Ratih Kusuma Wardani ◽  
Joko Wintoko ◽  
Rachmawan Budiarto ◽  
Margaretha Arnita Wuri ◽  
...  

The energy needs in Indonesia are mainly fulfilled by fossil fuels based energy. Since there is the rise of fuel price, Indonesia government considers seeking alternative energies from renewable resources. Biogas becomes one of the alternative energy that supplies energy needs and manages cow manure waste in Indonesia. To increase adoption of biogas technology, biogas production through methane enrichment is required. The experiment was conducted with return sludge system. These instruments consist of a series portable bio-digester, gas holder and return sludge unit. There were three treatments on biogas production without and with sludge addition or re-use bio-digester sludge that produced after biogas production as raw material for next biogas production. Biogas that produced was observed every two days during 40 days. The results showed that the addition of bio-digester sludge increased biogas production and methane concentration. The optimum retention time of biogas production with sludge addition was 20 days with accumulation biogas volume of 156.38 liters or increased of 38.75 from biogas production without bio-digester sludge). The optimum retention time to increase methane level was 15 days with methane enrichment from 0.8% to 29.41%.


2011 ◽  
Vol 236-238 ◽  
pp. 178-182
Author(s):  
Yi Guo Deng ◽  
Jin Li Wang ◽  
Jing Jiao ◽  
Yong Zheng ◽  
Gang Wang ◽  
...  

A self-designed constant temperature fermenter was manufactured and used for this study. Dry anaerobic fermentation experiments were conducted with sugarcane leaf residue as raw material. With the C/N ratio being 25:1, various total solids concentrations (TS), inoculum sizes and fermentation temperatures were selected to study biogas production characteristics. The experiment results showed that biogas yield increased rapidly during the initial stage of reaction, decreased quickly after reaching the peak, and the decrease slowed down at some level. Orthogonal experiment results showed that both fermentation temperature and solids concentration showed significant effects on gas production yield. Fermentation temperature showed the most significant effect, while the effect of inoculum size was not significant on gas yield. The optimum fermentation performance was obtained at 20% solid content, 35°C fermentation temperature, and 30% inoculum size.


2020 ◽  
Vol 35 (1) ◽  
pp. 38-45
Author(s):  
Ana Carolina Lopes Amaral Costa ◽  
Humberto de Jesus Eufrade Junior ◽  
Emanuel Rangel Spadim ◽  
José Mauro Santana Da Silva ◽  
Saulo Philipe Sebastião Guerra

CARACTERIZAÇÃO FÍSICA, QUÍMICA E MÊCANICA DE PELLETS DE BAGAÇO DE CANA-DE- AÇÚCAR   ANA CAROLINA LOPES AMARAL COSTA1, HUMBERTO DE JESUS EUFRADE JUNIOR2, EMANUEL RANGEL SPADIM3, JOSÉ MAURO SANTANA DA SILVA4, SAULO PHILIPE SEBASTIÃO GUERRA5   1 Departamento de Engenharia Rural e Socioeconomia, Faculdade de Ciências Agronômicas (FCA) – Universidade Estadual Paulista (UNESP), Avenida Universitária - 3780, CEP: 18610-034, Botucatu, São Paulo, Brasil. E-mail:  [email protected] 2 Departamento de Engenharia Rural e Socioeconomia, Faculdade de Ciências Agronômicas (FCA) – Universidade Estadual Paulista (UNESP), Avenida Universitária - 3780, CEP: 18610-034, Botucatu, São Paulo, Brasil. E-mail:  [email protected] 3 Departamento de Engenharia Rural e Socioeconomia, Faculdade de Ciências Agronômicas (FCA) – Universidade Estadual Paulista (UNESP), Avenida Universitária - 3780, CEP: 18610-034, Botucatu, São Paulo, Brasil. E-mail:  [email protected] 4 Departamento de Ciências Ambientais. Universidade Federal de São Carlos (UFSCar), Rod. João Leme dos Santos, km 110, CEP: 18052.780.  Bairro Itinga, Sorocaba, São Paulo, Brasil. E-mail: [email protected] 5 Departamento de Engenharia Rural e Socioeconomia, Faculdade de Ciências Agronômicas (FCA) – Universidade Estadual Paulista (UNESP), Avenida Universitária - 3780, CEP: 18610-034, Botucatu, São Paulo, Brasil. E-mail:  [email protected]   RESUMO: A bioenergia é uma das alternativas para diminuir a dependência de combustíveis fósseis da matriz energética mundial. Os pellets surgem como uma opção interessante para a produção de biomassa e o bagaço de cana-de-açúcar, também, pode ser aproveitado na forma de pellets. Pellets é o nome dado ao produto resultante do processo de compressão aplicada a uma matéria prima, sendo que em muitos casos essa matéria prima é preparada previamente através do processo de secagem e moagem. O objetivo da pesquisa foi realizar a análise das propriedades: físicas - densidade, umidade, granulometria, diâmetro e comprimento, químicas – teor de carbono fixo, material volátil e cinzas, mecânicas -  durabilidade mecânica e o poder calorífico superior. Foram analisadas amostras de pellets provenientes de fazendas do Estado de São Paulo. As análises foram conduzidas no Laboratório Agroflorestal de Biomassa e Bioenergia (LABB/IPBEN) pertencente à Faculdade de Ciências Agronômicas (FCA/UNESP), sendo esta biomassa uma fonte alternativa de energia com alto teor energético e baixa umidade   Palavras-chave: poder calorífico superior, biomassa, fontes alternativas de energia.   PHYSICAL, CHEMICAL AND MECHANICAL CHARACTERIZATION OF SUGARCANE BAGASSE PELLETS   ABSTRACT: Bioenergy is one of the alternatives to reduce the dependence on fossil fuels in the world energy matrix. Pellets appear like an attractive option for the production of biomass, and sugarcane can be used in the form of pellets. Pellets are the name given to the product that affects the process of applying a raw material, and in many cases, this material is prepared for the drying and grinding process. The objective of the research was to carry out an analysis of the properties: physical - density, granulometry, diameter and length, chemical - fixed carbon content, volatile matter and ashes, mechanics - mechanical use, and higher heating value. Samples of pellets from farms in the State of São Paulo were analyzed. Analyzes were conducted at the Agroforestry Laboratory of Biomass and Bioenergy (LABB / IPBEN) belonging to the Faculty of Agronomic Sciences (FCA / UNESP), and this biomass showed to be an alternative source of energy with high energy content and low moisture.    Keywords:  higher heating value, biomass, alternative energy source.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Buhari S. ◽  
M.N Yahaya ◽  
Nasiru A.

The cost and the health effects of using other forms of energy, such as energy from fossil fuels and coal, make it necessary to find alternative sources of energy which are cheap and have no health effects on humans, animals and the environment. The energy derived from animal wastes, such as camel, donkey and horse dung, provide that alternative source of energy to humanity. To treat the problem of fossil fuel usage and greenhouse gas emissions, biogas is considered a potential source of clean renewable energy. The aim of this work is to compare the amount of biogas produced from cow, horse and camel dung. This work used three 1 litre capacity plastic gallons as prototype biodigesters. These biodigesters were operated and daily gas produced from the dung was observed for 37 days retention time. The digesters were fed with the same proportion of dung from each animal, and water. The operating temperatures of the digesters were maintained within the range of 34-390C, while pH values of the slurries ranged from 4.90 to 7.3. The biogas produced in 37 days retention time were found to be (4550 cm3)/150g for camels, (2210 cm3)/150g for donkeys and (4000 cm3 )/150g for horses. It was observed that the dungs were stagnant for one week, and the more the retention time, the more gas was produced. This investigation revealed that the gas production process was started on day 7, due to the fact that those animals were fed with fibrous materials and a longer time is required for digesting fibrous materials by microorganisms. The results obtained are compared in order of camel > horse > donkey. It was found that camels produce the highest volume of gas followed by horse and then donkey. The process of methane gas production, if extended to the commercial scale, would not only provide an alternative source of energy but would also be a means of environmental sanitation for the study area and Nigeria at large.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Rany Puspita Dewi

The increasing consumption of fossil-based energy especially LPG (Liquid Petroleum Gas) that is not balanced with the availability of energy source, required a development of alternative energy with abundant amount and environmentally friendly. One of alternative energy source feasible to develop is the one from biomass waste that is livestock manure. Magelang becomes one of potential area in Central Jawa as biogas development. Biogas is produced by using digester anaerobically. Magelang has livestock about 142.127 with potency of gas production about 86.690 m3. The resulted biogas production equals to 43.345 kg of LPG or 14.448 of LPG 3 kg which is can fullfill the cooking needs for about 278 households in one year.


Author(s):  
Kamalu Abdullahi Alhassan ◽  
Badamasi Tijjani Abdullahi ◽  
M. Manjur Shah

Challenges related to energy shortages are increasingly frequent both at the local and global scale due to population growth and the desire for a greater standard of living. The growing demand for oil and natural gas caused by high consumption levels is one of the current major problems faced by the world population. Therefore, new forms of energy generation must be investigated that would eventually allow the diversification of the present energy matrix, which has an almost 90% dependence on fossil fuels the world over. This coupled with long-term economic and environmental concerns have resulted in a great amount of research in the past decades on renewable sources of liquid fuels to replace fossil fuels. Burning fossil fuels such as coal and oil releases carbon dioxide (CO2), which is a major cause of global warming. It is anticipated that not a single source of alternative energy but a mix of various energy sources and carriers will contribute to the energy system of the future. Among the various sources been explored, biogas offer one of the best alternative options as they present a viable option for improving sustainable development through energy security and reducing the emission of greenhouse gases. This paper elaborates on Biogas production as the alternative source of fuel. The paper also studies the importance of Biogas production as a means of reducing problem of power energy, environmental vandalism, loss of resources, climate change and also reduce environmental pollution caused by burning of woods, cars, motorcycle and industrial activities.


Konversi ◽  
2018 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Piyantina Rukmini

Abstrak- Biogas merupakan salah satu sumber energi alternatif yang sedang dikembangkan dan sumber energi yang terbarukan. Bahan baku yang digunakan adalah kulit jeruk busuk (Citrus sinensia osbeck) dan kobis (Brassica oleracea). Penelitian ini bertujuan untuk mengetahui pengaruh volatile solid dan limonen terhadap produksi biogas. Penelitian menggunakan erlenmeyer 500 mL sebanyak 6 buah, waterbath, manometer air, dan thermometer. Volume total digester 350 mL. Penelitian dilakukan dengan cara menghancurkan bahan baku supaya lebih mudah didegradasi oleh bakteri. Oksigen yang bersifat toxic bagi bakteri anaerobik, dapat dihilangkan dengan penambahan N2 dalam digester pada awal operasi. Penelitian dilakukan pada kondisi mesofilik (30 – 400C) selama 50 hari. Hasil penelitian menunjukkan bahwa pada digester yang memiliki VS sama (T1 dan T3 dengan 15% VS, dan T2 dan T4 dengan 20% VS), dengan konsentrasi kulit jeruk/limonen berbeda (T1= 114ppm< T3= 170ppm, dan T2= 152ppm<T4= 225ppm), maka digester dengan konsentrasi kulit jeruk/limonen yang lebih tinggi akan menghasilkan asam asetat lebih tinggi pada setiap minggunya. Akumulasi asam asetat pada fase acethogenesis menyebabkan bakteri methanogen tidak dapat tumbuh dengan optimum pada fase berikutnya (methanogenesis). Pada kondisi yang sama, digester yang memiliki konsentrasi kulit jeruk/limonen yang lebih besar (T1<T3, and T2<T4) akan menghasilkan volume biogas yang lebih besar (T1= 54.963 cm3<T3= 46.372 cm3, T2= 60.314 cm3<T4= 69.191 cm3). Pada konsentrasi kulit jeruk/limonen 114ppm, diperoleh metana dengan kadar 0.1298%V/grVS. Kata kunci: Biogas, digester anaerobic, kulit jeruk, limonen.   Absrtact- Biogas is one of alternative energy resources that is being developed and renewable. The raw material that use were rotten orange (Citrus sinensis osbeck) and cabbage (Brassica oleracea). This research aimed to know influence of volatile solid and limonene the biogas production from fruit and vegetable waste. This research used 6 unit of Erlenmeyer 500 mL, waterbath, water manometer, and thermometer. Total volume of the digester was 350 mL. Adjusment of the pH in the start up was done to make the optimum condition for pH grow of methanogen (6,8 – 7,8). Toxicity of oxygen could be healed by spraying N2 in the digester in the beginning. The research was done under mesophilic conditions (30 – 40)0, during 50 days. The results showed that digester that has same VS (T1 and T2) with 15% VS, T2 and T4 with 20% VS) with different concentration of rotten orange/limonene (T1=114ppm<T3=170ppm, and T2=152ppm<T4=225 ppm), hence digester with higher concentration of orange peel/limonene will produce higher acetic acid every week. Accumulation of acetic acid in acidogenesis phase because of the limonene caused the methanogen bacteria cannot grow in the next phase (methanogenesis). At the same conditions, the volume of biogas that has higher concentration of rotten orange/limonene (T1<T3, and T2<T4) will produce higher accumulation of biogas volume (T1=54.963cm3<T3=46.372 cm3, T2=60.314 cm3<T4=69.191 cm3). At concentration of rotten orange/limonene 114 ppm, would obtain 0.1298%/grVS of methane concentration. Keywords: Biogas, anaerobic digestion, orange peel, limonene


2019 ◽  
Vol 118 ◽  
pp. 03022
Author(s):  
Hongguang Zhu ◽  
Jing Yang ◽  
Cheng Xiaowei

The dead pig is an organic waste rich in oil and protein, and is an ideal anaerobic digestion raw material. This study based on single factor ANOVA and Modified Gompertz model. It investigated the effects of the ratio of dead pigs on biogas production by middle temperature co-digestion of pig manure and dead pigs. And the biogas production potential was determined. The results showed that there was no significant correlation between the ratio of dead pigs and the biogas production. The ratio would significantly affect the average methane content and degradation rate. When the addition ratio was in the range of 3 to 15%, the biogas production was between 191.39 and 202.44 (L/kg VS). The average contents of methane were 50.67%, 50.35%, 41.83%, 45.53% and 44.57%, respectively. The time required to reach 80% of the biogas production was 28, 34, 36, 65 and 63 days, respectively. The degradation rate of the raw materials was generally decreased with the increase of the addition ratio. The results of Modified Gompertz model fitting showed that the mixed raw materials had a fully anaerobic digestion with high utilization rate and short hysteresis in the range of 0 ~ 9%. Therefore, a hydraulic retention time (HRT) of 30 days and the addition ratio was in the range of 0 to 6% could be recommended for a continuous digester. It could get a better gas production and higher raw material utilization.


Sign in / Sign up

Export Citation Format

Share Document