scholarly journals Computer aided structural analysis of newly developed railway bogie frame

2018 ◽  
Vol 157 ◽  
pp. 02051 ◽  
Author(s):  
Pavol Šťastniak ◽  
Marián Moravčík ◽  
Peter Baran ◽  
Lukáš Smetanka

The paper is part of the publication series, which describe the most significant and innovative research and development design solutions and computational procedures as part of European structural funds project. The object of this article is strength conditions assessment of new structure of rail bogie frame, which is characterized mainly by better dynamic properties while driving on the track, good operational properties and higher safety against derailment. For validation of the new structure design, there has been created a substitute simulation model. Results of calculations and prototype tests prove, that new structure of the bogie frame satisfies strength assessments.

2019 ◽  
Vol 254 ◽  
pp. 02037 ◽  
Author(s):  
Pavol Šťastniak ◽  
Marián Moravčík ◽  
Lukáš Smetanka

The paper describe the most significant and innovative research and development design solutions and computational procedures as part of European structural funds project. The object of our calculations is strength simulation analyzes of a new structure of railway tank wagon for transportation of ignition matters through FEM analysis created in program MSC.Marc. Results of calculations and prototype tests prove, that new structure of the construction satisfies strength assessments according to valid requirements and standards.


2019 ◽  
Vol 267 ◽  
pp. 02001
Author(s):  
Liangli Xiao ◽  
Yan Liu ◽  
Zhuang Du ◽  
Zhao Yang ◽  
Kai Xu

This study combines specific high-rise shear wall residential projects with the Revit to demonstrate BIM application processes. The use of R-Star CAD may help to realize the link barrier of the building information model and the structural analysis software PKPM. Sequentially, the information supplement of the structural analysis model is completed by extracting the structural information with the Revit secondary development. By the collaborative design platform based on BIM technology, the paper examines the collision check of structural model, conducts collision analysis on other professional models and modifies the design scheme for conflict points. After the statistics of material usage, an optimized design is proposed. The findings of this paper could contribute to provide some reference for the specific application of BIM in structural design and realize the application of BIM technology in the process of building structure design.


2011 ◽  
Vol 308-310 ◽  
pp. 2279-2285
Author(s):  
Wei Chen Lee ◽  
Hill Wu

The electrical characteristics of an interconnection system, which include impedance, insertion loss, and return loss, can greatly affect its performance as the signal speed increases. The objective of this research was to understand the discrepancy between the computer-aided analysis and measurement results of an interconnection system, so that a more accurate prediction of the electrical characteristics of this system can be made during the design phase. It was discovered that in both the time and frequency domain the computer-aided analysis results were consistent with the measurement results. Given these conclusions the simulation model was modified to improve the impedance mismatch within the interconnection system. It was found that by properly designing the antipad, the impedance mismatch can be greatly reduced.


2017 ◽  
Vol 107 (07-08) ◽  
pp. 520-523
Author(s):  
J. Prof. Bliedtner ◽  
M. Schilling

Das FDM (Fused Deposition Modeling)-Verfahren ist aufgrund der Vielzahl von industriellen und privaten Anwendungen gegenwärtig das erfolgreichste 3D-Druck-Verfahren. Ziel des Forschungs- und Entwicklungsprojektes „HP3D“ ist die effiziente Herstellung von großformatigen Bauteilen in einem echten 3D-Verfahren aus frei wählbaren thermoplastischen Kunststoffen. An die Umsetzung des Projekts wurde sehr komplex herangegangen, um zu garantieren, dass die mechanischen und dynamischen Eigenschaften der aufgebauten Teile den konzipierten Eigenschaften entsprechen.   The FDM process is currently the most successful 3D printing process due to the multitude of industrial and private applications. The aim of the research and development project HP3D is the efficient production of large-format components in a real 3D process made of freely selectable thermoplastics. The implementation of the project has been very complex in order to ensure that the mechanical and dynamic properties of the assembled parts correspond to the designed properties.


2021 ◽  
pp. 1-14
Author(s):  
Bin Zhang ◽  
Xianwen Gao ◽  
Xiangyu Li

Summary In this paper, we study the simulation and fault diagnosis of a conventional pumping unit under balanced conditions. As the energy input of sucker-rod pumping (SRP), the motor power contains abundant information about the whole pumping cycle under SRP. It is an important step in oilfield information construction to establish a computer-aided system that is based on motor power diagnosis. Hence, we propose an SRP simulation model for generating motor power. By analyzing the working conditions of six oil wells that contain normal or insufficient liquid supply, gas lock, traveling valve leakage, standing valve leakage, and parting rod, we simulate the motor power of the six wells. In addition, we verify the simulation model using a test well with favorable performance and establish the motor power template set (MPTS) using this simulation model. To allow for computer-aided diagnosis, we propose the use of the area proportion method to extract motor power features. We establish a diagnosis model of oilwell conditions that is based on oblique decision tree and train the diagnosis model using the MPTS. Through the verification of six oil wells in the actual production of the oil field, the diagnosis model shows a favorable response. The test results show that the methods of establishing MPTS and oilwell working-condition diagnosis are feasible.


Author(s):  
Luigi De Iaco

- The recent European Commission's implementing regulation for the Structural and Cohesion Funds 2007-2013 establishes criteria for defining the Regions eligible for funding from the Structural Funds. Moreover it identifies the objectives to be reached during the programming period. The general objectives of the Structural policies consist in speeding up the convergence of the least-developed Member States and regions by improving conditions for growth and employment through higher quality investments in physical and human capital, innovation, environment and administrative efficiency. However, the indicators used to identify regions for funding mainly refer to GDP and population. Methods and Results The analysis uses a simulation model based on Regions of Member States financial allocation model. The results show that using indicators more coherent with the European Commission objectives would lead to a different funds allocation. Conclusions This paper tries to highlight the inconsistency of this process and, through the identification and use of alternative indicators, proposes some simulations in order to present a different and more coherent scenario of financial allocation of Structural Funds.


Author(s):  
Manuel Gomes Correia ◽  
Célio Maschio ◽  
Denis José Schiozer

Super-giant carbonate fields, such as Ghawar, in Saudi Arabia, and Lula, at the Brazilian pre-salt, show highly heterogeneous behavior that is linked to high permeability intervals in thin layers. This article applies Local Grid Refinements (LGR) integrated with upscaling procedures to improve the representation of highly laminated reservoirs in flow simulation by preserving the static properties and dynamic trends from geological model. This work was developed in five main steps: (1) define a conventional coarse grid, (2) define LGR in the conventional coarse grid according to super-k and well locations, (3) apply an upscaling procedure for all scenarios, (4) define LGR directly in the simulation model, without integrate geological trends in LGR and (5) compare the dynamic response for all cases. To check results and compare upscaling matches, was used the benchmark model UNISIM-II-R, a refined model based on a combination of Brazilian Pre-salt and Ghawar field information. The main results show that the upscaling of geological models for coarse grid with LGR in highly permeable thin layers provides a close dynamic representation of geological characterization compared to conventional coarse grid and LGR only near-wells. Pseudo-relative permeability curves should be considered for (a) conventional coarse grid or (b) LGR scenarios under dual-medium flow simulations as the upscaling of discrete fracture networks and dual-medium flow models presents several limitations. The conventional approach of LGR directly in simulation model, presents worse results than LGR integrated with upscaling procedures as the extrapolation of dynamic properties to the coarse block mismatch the dynamic behavior from geological characterization. This work suggests further improvements for results for upscaling procedures that mask the flow behavior in highly laminated reservoirs.


2011 ◽  
Vol 399-401 ◽  
pp. 2296-2300
Author(s):  
Wen Jie Peng ◽  
Rui Ge ◽  
Ming Kai Gu

This paper presents an optimization method for optimal engineering structure design. An interface procedure is essentially developed to combine the intelligent optimization algorithm and computer aided engineering (CAE) code. An optimization example is carried out to minimize the interlaminar normal stress of a laminate which affect the delamination failure of a laminate via arranging the stacking sequence. The analytical solution is calculated to validate the accuracy of optimization results.


Sign in / Sign up

Export Citation Format

Share Document