scholarly journals Development of requirements for the BIM model of the Arctic port facilities exploitation

2018 ◽  
Vol 170 ◽  
pp. 03027 ◽  
Author(s):  
Pavel Garibin ◽  
Evgeniy Ol’khovik

The development of information modeling technologies for construction offers new tasks to develop operational models for facilities, which are locate in most difficult conditions, here an important example is the marine Arctic ports. To build a life cycle model, reliable long-time information about hydrometeorological conditions for the selected port facility is needed. It also requires accurate data on the design and past loads. We offer the basic methods for obtaining the initial data for operation BIM model subject to the technical and design documentation are absent, what is a common practice for old facilities. The main theses for development of information BIM model for a marine port’s facilities exploitation in the Arctic are proposed in this paper. At the initial stage of description of the structure life cycle, it is necessary to develop an electronic passport of the facility that would contain the basic geometric characteristics of the structures elements, the information about the applied materials and their physical and mechanical properties, coordinates of the plan and deformation geodetic network in the digital format. At the next stage, it is necessary to provide automated monitoring for measuring the main parameters of loads, deformations and climatic conditions, which in combination ensure the safety of the port’s structures.

2021 ◽  
Vol 25 (1) ◽  
pp. 1003-1017
Author(s):  
Syed Shujaa Safdar Gardezi ◽  
Nasir Shafiq ◽  
Ishtiaq Hassan ◽  
M. Usman Arshid

Abstract The ever-increasing concentration of Carbon footprint into the environment has drastically changed the climatic conditions. Among many anthropogenic activities, the housing sector remains one of the major contributors. However, a complete assessment of these environmental impacts throughout the life cycle still remains an area of concern. Most of the study does not assess the impacts by each phase of lifecycle. The current work presents a complete approach for carbon footprint assessment including planning, construction, operational, maintenance and dismantling & dispose-off phase. Life Cycle Assessment (LCA) with boundary limitations of ‘cradle to grave’ was adopted. Thirteen housing units were selected as case study. These included detached, semi-detached and terraced types of construction. Selected units were developed in a virtual environment using Building Information Modeling (BIM). The study observed the average contribution range from 1.48 tons-CO2/yr to 2.85 tons-CO2/yr. On individual basis, the execution phase dominated the five phases with almost 43 %. The operational phase shared 39 % followed by maintenance (15 %), dismantling & dispose-off (1.8 %) and planning at the last (1.5 %). The categorization of environmental impact into embodied and operational carbon footprint observed the embodied part in dominance. A strong positive relationship between the area of housing units and resulting carbon impact was also observed. The work presents one of few environmental studies for a tropical housing sector assessing complete life cycle. The study provides a vital guideline to the designers for ensuring a sustainable environment by assessing and opting less carbon intensive options at early stage of planning and design.


2017 ◽  
Vol 27 (51) ◽  
pp. 748
Author(s):  
Enoil De Souza Júnior ◽  
Kátia Kellem Da Rosa ◽  
Jefferson Cardia Simões

<p>Desde o período das Grandes Navegações, mais precisamente nos séculos XV e XVI, procura-se uma maneira mais rápida de ligar a Europa, Ásia e América. Nessa procura muitos exploradores se aventuraram no Ártico, porém naquela época, as condições climáticas eram diferentes das atuais, sendo que o gelo marinho cobria quase toda extensão do Oceano Ártico mesmo no verão.  Assim, as rotas marítimas árticas não puderam ser exploradas por muito tempo. Entretanto, com o atual aquecimento no Ártico e a consequente retração do gelo marinho, o que era um sonho passa a ser realidade: as rotas que outrora foram abandonadas por serem de difícil acesso, passam a ligar o mundo de maneira mais rápida e barata. Neste artigo examina a procura por essas rotas em artigos científicos e em livros que relatam registros históricos e qual é a expectativa para o século XXI.</p><p><strong>Palavras–chave:</strong> Rota Nordeste, Rota Noroeste, Ártico.</p><p><strong>Abstract </strong></p><p>Since the Great Navigations period, 15th and 16th centuries, there has been a search for faster sea-lanes to connect Europe, Asia and America. In this search many explorers ventured in the Arctic, however, at that time the climatic conditions were different from the current ones, sea ice covered almost the entire length of the Arctic Ocean even in high summer, so for a long time the Arctic sea routes could not be explored. Presently, the Arctic warming and the consequent decline of sea ice cover area, make such routes a reality and could potentially connect the world more quickly and cheaply. This paper examines the search for these routes in papers and books that reports historical events and what could be expected for the 21th century.</p><p><strong>Keywords</strong>: Northeast Passage, Northwest Passage, Arctic.</p>


2018 ◽  
Vol 38 ◽  
pp. 37-53 ◽  
Author(s):  
Tore Qvenild ◽  
Eirik Fjeld ◽  
Arne Fjellheim ◽  
Sigurd Rognerud ◽  
Åsmund Tysse

On the Norwegian mainland, the Arctic tadpole shrimp Lepidurus arcticus is a typically alpine species mainly co-occurring with fish. The Hardangervidda mountain plateau is the main area of the southernmost L. arcticus populations. Here L. arcticus is widely distributed, especially in the central and eastern parts of the plateau. Lepidurus arcticus has a univoltine life cycle emerging from resting eggs at ice break-up and fulfil development during the short mountain summer, before they reproduce and die. The main goal in this study was to investigate the thermal thresholds for L. arcticus. Timing of ice break-up and the proceeding water temperature are hypothesized to constitute the primary drivers of L. arcticus's development and growth. Stomach analyses of brown trout is the most sensitive method for sampling L. arcticus, especially at low densities. Analyses of 4 460 brown trout stomachs revealed that at least 400 degree-days are needed for development and growth from hatching in to adults. It is a significant gradient in climatic conditions on Hardangervidda with a coastal impact in the western part of the plateau with a three - to fourfold winter deposition compared to a dryer inland region in the east. The snow deposits have increased since the 1980s and snow rich winters have been more frequent. An additional increase is projected. This may give lower water temperature and shorter ice-free seasons. Thus, the cold western lakes could be even more hostile habitats for L. arcticus. During the same period, an abrupt increase in spring-summer temperatures was detected. This has improved the conditions for L. arcticus in many lakes. However, as a cold stenotherm species a further increase in temperature may be detrimental. Especially in shallow lakes in the central and eastern parts this may be a problem even without reaching critical levels by inducing life cycle mismatches.


Improving the efficiency of life cycle management of capital construction projects using information modeling technologies is one of the important tasks of the construction industry. The paper presents an analysis of accumulated domestic practices, including the legal and regulatory framework, assessing the effectiveness of managing the implementation of investment construction projects and of complex and serial capital construction projects, as well as the life cycle management of especially dangerous technically complex and unique capital construction projects using information modeling technologies, especially capital construction projects, as well as their supporting and using systems, primarily in the nuclear and transport sectors. A review of modern approaches to assessing the effectiveness of life cycle management systems of complex engineering systems in relation to capital construction projects is carried out. The presented material will make it possible to formulate the basic principles and prospects of applying approaches to assessing the effectiveness of the life cycle management system of a capital construction project using information modeling technologies.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Author(s):  
Martina Caruso ◽  
Rui Pinho ◽  
Federica Bianchi ◽  
Francesco Cavalieri ◽  
Maria Teresa Lemmo

AbstractA life cycle framework for a new integrated classification system for buildings and the identification of renovation strategies that lead to an optimal balance between reduction of seismic vulnerability and increase of energy efficiency, considering both economic losses and environmental impacts, is discussed through a parametric application to an exemplificative case-study building. Such framework accounts for the economic and environmental contributions of initial construction, operational energy consumption, earthquake-induced damage repair activities, retrofitting interventions, and demolition. One-off and annual monetary expenses and environmental impacts through the building life cycle are suggested as meaningful performance metrics to develop an integrated classification system for buildings and to identify the optimal renovation strategy leading to a combined reduction of economic and environmental impacts, depending on the climatic conditions and the seismic hazard at the site of interest. The illustrative application of the framework to an existing school building is then carried out, investigating alternative retrofitting solutions, including either sole structural retrofitting options or sole energy refurbishments, as well as integrated strategies that target both objectives, with a view to demonstrate its practicality and to explore its ensuing results. The influence of seismic hazard and climatic conditions is quantitatively investigated, by assuming the building to be located into different geographic locations.


2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


Author(s):  
E V Kozlova ◽  
V V Yakinchuk ◽  
K A Starikov ◽  
A V Bolshakova ◽  
A A Bocharov

2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


2021 ◽  
pp. 009524432110290
Author(s):  
Mariya L Davydova ◽  
Aytalina F Fedorova

This article represents the results of a study of changes in the properties of vulcanizates based on BNR-18 butadiene-nitrile rubber containing as stabilizers the experimental spatially hindered phenols Stafen, CO3, CO4, and industrial antioxidant 6PPD, after accelerated aging (100°C 96 h) and aging under full-scale exposure in extreme climatic conditions of the Republic of Sakha (Yakutia) during 2 years. In winter, the air temperature reached—48°C, in summer—+36.1°C. It is shown that the experimental sterically hindered phenols more effectively under natural exposure conditions. They are characterized by the most stability in terms of strength throughout the entire exposure period. Under conditions of accelerated aging, the vulcanizate containing the industrial antioxidant 6PPD is characterized by the greatest stability of physical and mechanical properties. According to the viscoelastic characteristics obtained in the dynamic loading mode, the contribution of the presented stabilizers in maintaining resistance to temperature and deformation effects compared with unstabilized rubber is confirmed.


Sign in / Sign up

Export Citation Format

Share Document