scholarly journals Eccentric rotary swaging variants

2018 ◽  
Vol 190 ◽  
pp. 15003 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Svetlana Ishkina ◽  
Christian Schenck ◽  
Axel von Hehl ◽  
Hans-Werner Zoch ◽  
...  

Rotary swaging is an incremental cold forming process that changes beneath the geometry also the microstructure and mechanical properties of workpiece. Especially a new process design with Eccentric Flat Shaped Dies (EFSD) influences both the kind and amount of stress and plastic strain and consequently the material structure and hence the material and workpiece properties. Eccentric rotary swaging typically provides a helical material flow. According to the process parameters the microstructure features a typical eddy pattern with a spiral shaped grain orientation. The forming process can be carried out in one or more process steps. In a multi-stage process, it is possible to change the feed direction and, hence, the material flow helix direction. This approach can be used as a possibility to improve the homogeneity of the workpiece and material properties. In addition, for this aims an intermediate heat treatment in multi-stage forming operations could be realised. Following the goal of optimising the final properties, the question arises how these mechanical and thermal treatments affect the material microstructure and the forming properties of the workpiece and how they interact. Experiments were conducted with austenitic stainless steel rods of grade AISI304. The effects of the varied feed direction, feed velocity and heat treatment between the forming operations are discussed.

2019 ◽  
Vol 6 ◽  
pp. 15
Author(s):  
Svetlana Ortmann Ishkina ◽  
Anastasiya Toenjes ◽  
Christian Schenck ◽  
Axel von Hehl ◽  
Hans-Werner Zoch ◽  
...  

Rotary swaging is an incremental cold forming process that changes beneath the geometry also the microstructure and mechanical properties of the workpiece. Especially a new process design with Eccentric Flat Shaped Dies (EFSD) influences both the kind and amount of stress and plastic strain and consequently the material structure, and hence the material and workpiece properties. Eccentric rotary swaging typically provides a helical material flow. According to the process parameters the microstructure features a typical eddy pattern with a spiral shaped grain orientation. The forming process can be carried out in one or more process steps. In a multistage process, it is possible to change the feed direction and, hence, the material flow helix direction. This approach can be used as a possibility to improve the homogeneity of the workpiece and material properties. In addition, for this aims an intermediate heat treatment in multistage forming operations could be realized. Following the goal of optimizing the final properties, the question arises how these mechanical and thermal treatments affect the material microstructure and the forming properties of the workpiece and how they interact. Experiments were conducted with austenitic stainless steel rods of grade AISI304. The effects of the varied feed direction, feed velocity and heat treatment between the forming operations are discussed.


2015 ◽  
Vol 651-653 ◽  
pp. 627-632 ◽  
Author(s):  
Svetlana Ishkina ◽  
Bernd Kuhfuss ◽  
Christian Schenck

Rotary swaging is a well established cold forming process e.g. in the automotive industry. In order to modify the material properties by swaging systematically, a new process of swaging with asymmetrical strokes of the forming dies is investigated. The newly developed tools feature flat surfaces and do not represent the geometry of the formed part as in conventional swaging. Numerical simulation and physical tests are carried out with special regard to the resulting geometry, mechanical properties and the microstructure. During these tests copper wires with diameter d0=1 mm are formed. Regarding the microstructure in the longitudinal section of formed specimens, elongation of grains in the central part and grain size reduction in the boundary area are observed. Furthermore, this approach opens up new possibilities to configure the geometry of wires. 2D-simulation is applied and discussed in the paper to investigate change of the processed geometry (cross-section) and shear strain distribution during the rotary swaging process.


2018 ◽  
Vol 190 ◽  
pp. 15002 ◽  
Author(s):  
Eric Moumi ◽  
Marius Herrmann ◽  
Christian Schenck ◽  
Bernd Kuhfuss

Rotary swaging is an incremental forming process with two main process variations plunge and infeed rotary swaging. With plunge rotary swaging, the diameter is reduced within a limited section whereas the infeed rotary swaging enables a diameter reduction over the entire workpiece length. The process is now subject to intensive investigation for manufacturing of micro parts. By increasing the process speed, failures occur particularly due to inappropriate material flow. In plunge rotary swaging, the workpiece material can flow radially into the gap between the dies and thus the workpiece quality suffers. In infeed rotary swaging the workpiece material flows against the feeding direction and can provoke bending or braking of the workpiece. Therefore, additional measures to control both the radial and the axial material flow to enable high productivity micro rotary swaging are investigated. The radial material flow during plunge rotary swaging can be controlled by elastic intermediate elements that enable an increase of productivity by factor three. A spring-loaded clamping device that enables an increase of the productivity by factor four can temporarily buffer the axial material flow in infeed rotary swaging against the feeding direction.


2018 ◽  
Vol 190 ◽  
pp. 04003 ◽  
Author(s):  
Yang Liu ◽  
Marius Herrmann ◽  
Christian Schenck ◽  
Bernd Kuhfuss

In rotary swaging – an incremental cold forming production technique to reduce the diameter of axisymmetric parts – the material flow can be assumed to be predominantly axial and radial. The actual ratio of this axial and radial flow influences the mechanical properties and especially in tube forming the final geometry. It is known that during mandrel free infeed rotary swaging of tubes the wall thickness changes. The change is depending on the process parameters like incremental and cumulated strain. Hence, the ratio of axial and radial material flow changes. Consequently, the analysis of the wall thickness of rotary swaged tubes enables fundamental insight how to control the material flow direction. In this study, the infeed rotary swaging process of steel tubes with different wall thicknesses from 3 mm to 7 mm and rods were investigated with FEM under two feeding velocities. The axial and radial material flow and the resulting geometry were studied by the relative wall thickness. It could be seen that the relative wall thickness was affected by the feeding velocity as well as the initial wall thickness. The findings of the simulation were validated by rotary swaging experiments.


2014 ◽  
Vol 496-500 ◽  
pp. 51-54
Author(s):  
Yu Hong Yuan ◽  
Zhi Jun Liu ◽  
Wei Gang Zheng ◽  
Shang Jun Zhong

The relationships between microsturcture and cold forming property of 38CrMoAl steel have been studied by experimental analysis investigation. The heat treatment p rocess of guenching cyclic sphereidized annealing for obtaining sturcture with optimum cold forming property was suggested. Through this process the characters with lowerhardness, lower plastic deformation resistance and better processing plastic of the steel can get. the properties of this steel can meet the requirement of cold forming process for materials.


2015 ◽  
Vol 651-653 ◽  
pp. 1042-1047 ◽  
Author(s):  
Marius Herrmann ◽  
Bernd Kuhfuss ◽  
Christian Schenck

Rotary swaging is an incremental cold forming process for tubes and rods. The established processes use lubricants based on mineral oil. The functions of the lubricant are the reduction of friction, wear and tool load, furthermore it cools the tools and flushes the working zone. But the use of lubricant increases the cost due to additional process steps and lubricant is diverted with the work piece during the process. Thus from economic and ecological points of view it is worthwhile to eliminate the use of lubricant. Therefore it is necessary to realize the functions of the lubricant in another way. For example by means of coating and micro-structuring of the tools the friction and wear can be influenced. In this study dry rotary swaging is tested with conventional tools and machine settings. The analysis of the recorded process parameters and the formed geometry of the workpiece reveal the potential of dry rotary swaging, but also the difficulties that arise. Dry rotary swaging needs a modification of the process and system parameters as well as an adjustment of the tools.


2007 ◽  
Vol 340-341 ◽  
pp. 767-772
Author(s):  
Ryutaro Hino ◽  
Akihiko Sasaki ◽  
Fusahito Yoshida ◽  
Vassili V. Toropov

In this study, a new simulation-based design technique for multi-stage metal forming process is developed with special emphasis on reduction of stages in the process. The developed design technique is an iterative design optimization, which is based on response-surface-based numerical optimization and finite element analysis of the process. The design procedure starts with the initial rough process design. To eliminate one stage in the multi-stage process, the new optimum process design is determined based on the former process design by using numerical optimization in conjunction with FE simulation. This design optimization step is repeated, reducing the stages one by one, until the possible minimum number of stages is reached. The developed design technique is applied to stage reduction of a 3-stage axisymmetric forging process of aluminum billet. We can confirm that a new 2-stage process design is determined successfully and the developed design optimization technique is effective to reduce stages in multi-stage forming process.


Author(s):  
Bruno Inácio MAIA ◽  
André Hideto FUTAMI ◽  
Marco Aurélio DE OLIVEIRA ◽  
Luiz Veriano Oliveira DALLA VALENTINA

Niobium alloy steels are still little known and debated when applied to the metallurgy industry, including cold forming process. It is not much clear about its characteristics and your mechanical performance when compared to traditional steels, which the market already uses. The possibility of input new materials, reducing costs and generating competitiveness is the basis for researches that can generate new opportunities for industries. In this article, we showed the possibility of withdrawing the heat treatment process, which guided the execution of the tests presented here. This paper deals with the performance comparison of SAE 1312 MOD steel compared to ISO 898-1, which deals with mechanical performance for bolts. The tests were correlated with the bolts of 8.8 resistance class, which currently have heat treatment. It is possible to evaluate the positive performance of the niobium-alloyed steel (SAE 1312 MOD), despite the occasional performance limitations in some attributes addressed in ISO 898-1.


2015 ◽  
Vol 651-653 ◽  
pp. 1072-1077 ◽  
Author(s):  
Yasunori Harada ◽  
Minoru Ueyama

This paper deals with the formability of pure titanium sheet in square cup deep drawing. Pure titanium has very excellent corrosion resistance. In the metal forming process, pure titanium has very good ductility in cold forming. The normal anisotropy of pure titanium is very high. Therefore, the property is suitable to the sheet metal forming, such as deep drawing process. However, the most important problem is that the occurrence of seizure becomes remarkable in severe forming operations. Many investigations on the effect of processing conditions on the seizure of titanium were carried out. In the present study, the formability of pure titanium sheet in square cup deep drawing was investigated. For the prevention, pure titanium sheets were treated by heat oxide coating. The fresh and clean titanium is not in direct contact with the die during the forming due to the existence of the oxide layer. The material was pure titanium sheets of the JIS grade 2. The initial thickness of the blank was 0.5 mm in thickness. In the deep drawing process, the sheets were employed and a flat sheet blank is formed into a square by a punch. Forming of sheet by multi-stage deep drawing was tried. Various cups were drawn by exchanging the punch and die. The die was taper without a blankholder in the subsequent stages. The effects of the intermediate annealing and tool shape on the occurrence of seizure in square cup deep drawing were also examined. The square cups were successfully drawn by heat oxide coating. The coating of titanium sheet has sufficient ability in preventing the seizure in multi-stage deep drawing operation. The results of the present study revealed that the pure titanium square cups were successfully formed by using heat oxide coating treatment.


Author(s):  
Deborah Heritier ◽  
Sylvain Pillot ◽  
Stéphanie Corre ◽  
Cédric Chauvy ◽  
Patrick Toussaint

During fabrication of large pressure vessels, thick plates are submitted to numerous process phases that may affect the initial (i.e. as delivered) properties of the material. Regarding the advantages (both technical and economical) of cold forming process, this technique is largely preferred and widely spread. Modern forming presses and rollers are now sufficiently powerful to roll very thick plates (typically up to 250mm thick) devoted to ultra-heavy pressure equipments. As force does not really constitute a limitation anymore, current limitations are now focusing on maximum admissible strain in materials. This particular limit is linked to: - Intrinsic maximum deformation admissible by the material (given by tensile tests), - Regulation rules coming from construction codes. From a practical point of view, the actual limitation comes from the construction codes that are very severe. Main codes (ASME Boilers and Pressure Vessels Construction Code from American side and EN 13445 Unfired Pressure Vessels Construction Code from European side) both give a limit equal to 5% strain for using material in “as-strained” condition without any heat treatment. Above this limit, the philosophy differs from one code to another. While European Code requires a full quality treatment of the strained material (Normalisation or Austenitization / Tempering), American code only requires Tempering, allowing fabricators the possibility of using the mandatory Post Weld Heat Treatment (PWHT) (needed by welded zones) as a tempering treatment to improve welded zone toughness and to regenerate material properties. The purpose of this contribution is to review the effect of pre-strain on mechanical properties (Hardness, Tensile and Toughness transition curves) for different strain levels and to evaluate the ability of typical PWHT to regenerate material properties. Results presented in this paper are based on both recent studies on the most common up-to-date materials as well as on historical data collected in the last decades. This study clearly demonstrates that the required PWHT is efficient enough to regenerate all material properties and that there is no need to apply a full quality heat treatment, even for the highest level of strain. This benefits both the fabricator and the end user as it implies reducing costs and risks of components deformation while maintaining the necessary level of service properties.


Sign in / Sign up

Export Citation Format

Share Document