scholarly journals Effect of added the polycarboxylate ether on slump retention and compressive strength of the high-performance concrete

2018 ◽  
Vol 195 ◽  
pp. 01020 ◽  
Author(s):  
Jonbi Jonbi ◽  
Resti Nur Arini ◽  
Basori Anwar ◽  
Mohamad Ali Fulazzaky

It is well known that workability of high performance concrete (HPC) is dependent on slump value of concrete mixture. Moreover, slump retention is the most sensitive compared to a well-known slump value because it represents the durability of concrete mixture for its applications in the field of civil engineering. This research used the polycarboxylate ether (PCE) to increase slump value of concrete mixture and then verified the effect of PCE on the slump retention and compressive strength of different high-performance concretes. 0%, 0.5%, 1%, 2% of PCE were added into concrete mixture to yield a minimum compressive strength of f’c 50 MPa. The slump retention tests were performed at 0, 15, 30, 45, 60 and 75 minutes while the compressive strength tests were carried out at 3, 7, 14 and 28 days for every concrete sample. The result findings showed that the optimal concrete performance can be achieved by adding 2% of PCE to reach at a slump retention value of 45 minutes and a compressive strength of 53.84 MPa. Effect of PCE on the slump retention and compressive strength has been verified to contribute an insight into the application of a proper designed workability of HPC.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4757
Author(s):  
Afshin Marani ◽  
Armin Jamali ◽  
Moncef L. Nehdi

There have been abundant experimental studies exploring ultra-high-performance concrete (UHPC) in recent years. However, the relationships between the engineering properties of UHPC and its mixture composition are highly nonlinear and difficult to delineate using traditional statistical methods. There is a need for robust and advanced methods that can streamline the diverse pertinent experimental data available to create predictive tools with superior accuracy and provide insight into its nonlinear materials science aspects. Machine learning is a powerful tool that can unravel underlying patterns in complex data. Accordingly, this study endeavors to employ state-of-the-art machine learning techniques to predict the compressive strength of UHPC using a comprehensive experimental database retrieved from the open literature consisting of 810 test observations and 15 input features. A novel approach based on tabular generative adversarial networks was used to generate 6513 plausible synthetic data for training robust machine learning models, including random forest, extra trees, and gradient boosting regression. While the models were trained using the synthetic data, their ability to generalize their predictions was tested on the 810 experimental data thus far unknown and never presented to the models. The results indicate that the developed models achieved outstanding predictive performance. Parametric studies using the models were able to provide insight into the strength development mechanisms of UHPC and the significance of the various influential parameters.


2015 ◽  
Vol 1115 ◽  
pp. 146-149
Author(s):  
Maisarah Ali ◽  
Muhamad Zharif Ahmad ◽  
Siti Asmahani Saad

Conventional concrete does not have durability and higher strength as produced by high performance concrete (HPC). It is known that the HPC possess the following three properties which are high workability, high strength, and durability. The introduction of polycarboxylate ether (PCE) superplasticizer was proved to enhance the workability of concrete even though at a lower water to cement ratio. The study was conducted to find the optimum dosage of PCE and to compare its compressive strength, physical characteristics and morphology of the HPC. The result of the test shows that the high performance concrete (HPC) with addition of 0.5% polycarboxylate ether (PCE) superplasticizer of the cement mass have the highest compressive strength and excellent physical properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Wang ◽  
Shuo Liu ◽  
Qizhi Wang ◽  
Wei Yuan ◽  
Mingzhang Chen ◽  
...  

Based on forced vibration tests for high-performance concrete (HPC), the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940054 ◽  
Author(s):  
Rongrong Yin ◽  
Jie Hu ◽  
Yu Liu ◽  
Qing Wu ◽  
Chenchen Zhang ◽  
...  

The thickness of corroded concrete layer and the compressive strength of prisms under the action of sulfate and chloride salt were investigated by ultrasonic test and compression test, respectively. The results show that under the single action of sulfate, the strength of concrete experienced two stages: a slow growth stage and a rapid descent stage. Correspondingly, under the combined action of sulfate and chloride, the concrete strength experienced another two stages: a slow growth stage and a slow degradation stage. The existence of chloride inhibited the corrosion damage of concrete in a certain extent. It was found that higher concentration of chlorine salt would lead to a stronger inhibition effect. A good consistency was observed among corrosion layer thickness, compressive strength and X-ray diffraction results. The inhabitation of chloride to the sulfate corrosion of concrete was proved.


2019 ◽  
Vol 4 ◽  
pp. 9
Author(s):  
Irfan U. Jan

Modern technologies have affected all fields of human activities. Traditionally nanotechnologies deal with material having a dimension in the range of one billionth of a meter or 100 Nano meter in size. It has been widely used in natural sciences and biomedical sciences in the fields like microbiology, medicine, electronic, chemical, and materials sciences. The application of nontechnology and Nano material in Civil Engineering is still under active research in the areas of Concrete Technology, Construction management, water purification systems, Properties of Concrete at early ages and use of modern polymers in producing High Performance Concrete (HPC). The use of Nano material to produce relatively sustainable concrete represents a promising area of research in Nano material. In this paper the State of the Art of application of Nanotechnologies to Civil Engineering and its future prospects with special reference to sustainability in construction.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 38-47
Author(s):  
Joaquín Abellán García ◽  
Nancy Torres Castellanos ◽  
Jaime Antonio Fernandez Gomez ◽  
Andres Mauricio Nuñez Lopez

Ultra-high-performance concrete (UHPC) is a kind of high-tech cementitious material with superb mechanical and durability properties compared to other types of concrete. However, due to the high content of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. For this reason, several efforts around the world have been made to develop UHPC with greener and less expensive local pozzolans. This study aimed to design and produce UHPC using local fly ash available in Colombia. A numerical optimization, based on Design of Experiments (DoE) and multi-objective criteria, was performed to obtain a mixture with the proper flow and highest compressive strength, while simultaneously having the minimum content of cement. The results showed that, despite the low quality of local fly ashes in Colombia, compressive strength values of 150 MPa without any heat treatment can be achieved.


Sign in / Sign up

Export Citation Format

Share Document