scholarly journals Embedded System Confidentiality Protection by Cryptographic Engine Implemented with Composite Field Arithmetic

2018 ◽  
Vol 210 ◽  
pp. 02047 ◽  
Author(s):  
Weike Wang ◽  
Xiang Wang ◽  
Pei Du ◽  
Yuntong Tian ◽  
Xiaobing Zhang ◽  
...  

Embedded systems are subjecting to various kinds of security threats. Some malicious attacks exploit valid code gadgets to launch destructive actions or to reveal critical details. Some previous memory encryption strategies aiming at this issue suffer from unacceptable performance overhead and resource consumption. This paper proposes a hardware based confidentiality protection method to secure the code and data stored and transferred in embedded systems. This method takes advantage of the I/D-cache structure to reduce the frequency of the cryptographic encryption and decryption processing. We implement the AES engine with composite field arithmetic to reduce the cost of hardware implementation. The proposed architecture is implemented on EP2C70 FPGA chip with OpenRisc 1200 based SoC. The experiment results show that the AES engine is required to work only in the case of I/D-cache miss and the hardware implementation overhead can save 53.24% and 13.39% for the AES engine and SoC respectively.

The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


10.28945/3391 ◽  
2009 ◽  
Author(s):  
Moshe Pelleh

In our world, where most systems become embedded systems, the approach of designing embedded systems is still frequently similar to the approach of designing organic systems (or not embedded systems). An organic system, like a personal computer or a work station, must be able to run any task submitted to it at any time (with certain constrains depending on the machine). Consequently, it must have a sophisticated general purpose Operating System (OS) to schedule, dispatch, maintain and monitor the tasks and assist them in special cases (particularly communication and synchronization between them and with external devices). These OSs require an overhead on the memory, on the cache and on the run time. Moreover, generally they are task oriented rather than machine oriented; therefore the processor's throughput is penalized. On the other hand, an embedded system, like an Anti-lock Braking System (ABS), executes always the same software application. Frequently it is a small or medium size system, or made up of several such systems. Many small or medium size embedded systems, with limited number of tasks, can be scheduled by our proposed hardware architecture, based on the Motorola 500MHz MPC7410 processor, enhancing its throughput and avoiding the software OS overhead, complexity, maintenance and price. Encouraged by our experimental results, we shall develop a compiler to assist our method. In the meantime we will present here our proposal and the experimental results.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Balaji M ◽  
Chandrasekaran M ◽  
Vaithiyanathan Dhandapani

A Novel Rail-Network Hardware with simulation facilities is presented in this paper. The hardware is designed to facilitate the learning of application-oriented, logical, real-time programming in an embedded system environment. The platform enables the creation of multiple unique programming scenarios with variability in complexity without any hardware changes. Prior experimental hardware comes with static programming facilities that focus the students’ learning on hardware features and programming basics, leaving them ill-equipped to take up practical applications with more real-time constraints. This hardware complements and completes their learning to help them program real-world embedded systems. The hardware uses LEDs to simulate the movement of trains in a network. The network has train stations, intersections and parking slots where the train movements can be controlled by using a 16-bit Renesas RL78/G13 microcontroller. Additionally, simulating facilities are provided to enable the students to navigate the trains by manual controls using switches and indicators. This helps them get an easy understanding of train navigation functions before taking up programming. The students start with simple tasks and gradually progress to more complicated ones with real-time constraints, on their own. During training, students’ learning outcomes are evaluated by obtaining their feedback and conducting a test at the end to measure their knowledge acquisition during the training. Students’ Knowledge Enhancement Index is originated to measure the knowledge acquired by the students. It is observed that 87% of students have successfully enhanced their knowledge undergoing training with this rail-network simulator.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Michele Alessandrini ◽  
Giorgio Biagetti ◽  
Paolo Crippa ◽  
Laura Falaschetti ◽  
Lorenzo Manoni ◽  
...  

Singular value decomposition (SVD) is a central mathematical tool for several emerging applications in embedded systems, such as multiple-input multiple-output (MIMO) systems, data analytics, sparse representation of signals. Since SVD algorithms reduce to solve an eigenvalue problem, that is computationally expensive, both specific hardware solutions and parallel implementations have been proposed to overcome this bottleneck. However, as those solutions require additional hardware resources that are not in general available in embedded systems, optimized algorithms are demanded in this context. The aim of this paper is to present an efficient implementation of the SVD algorithm on ARM Cortex-M. To this end, we proceed to (i) present a comprehensive treatment of the most common algorithms for SVD, providing a fairly complete and deep overview of these algorithms, with a common notation, (ii) implement them on an ARM Cortex-M4F microcontroller, in order to develop a library suitable for embedded systems without an operating system, (iii) find, through a comparative study of the proposed SVD algorithms, the best implementation suitable for a low-resource bare-metal embedded system, (iv) show a practical application to Kalman filtering of an inertial measurement unit (IMU), as an example of how SVD can improve the accuracy of existing algorithms and of its usefulness on a such low-resources system. All these contributions can be used as guidelines for embedded system designers. Regarding the second point, the chosen algorithms have been implemented on ARM Cortex-M4F microcontrollers with very limited hardware resources with respect to more advanced CPUs. Several experiments have been conducted to select which algorithms guarantee the best performance in terms of speed, accuracy and energy consumption.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 146
Author(s):  
Lakshmi Prasad Mudarakola ◽  
J K.R. Sastry ◽  
V Chandra Prakash

Thorough testing of embedded systems is required especially when the systems are related to monitoring and controlling the mission critical and safety critical systems. The embedded systems must be tested comprehensively which include testing hardware, software and both together. Embedded systems are highly intelligent devices that are infiltrating our daily lives such as the mobile in your pocket, and wireless infrastructure behind it, routers, home theatre system, the air traffic control station etc. Software now makes up 90% of the value of these devices. In this paper, authors present different methods to test an embedded system using test cases generated through combinatorial techniques. The experimental results for testing a TMCNRS (Temperature Monitoring and Controlling Nuclear Reactor System) using test cases generated from combinatorial methods are also shown.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650029 ◽  
Author(s):  
Adam Ziebinski ◽  
Stanwlaw Swierc

Currently embedded system designs aim to improve areas such as speed, energy efficiency and the cost of an application. Application-specific instruction set extensions on reconfigurable hardware provide such opportunities. The article presents a new approach for generating soft core processors that are optimized for specific tasks. In this work, we describe an automatic method for selecting custom instructions for generating software core processors that are based on the machine code of the application program. As the result, a soft core processor will contain the logic that is absolutely necessary. This solution requires fewer gates to be synthesized in the field programmable gate arrays (FPGA) and has a potential to increase the speed of the information processing that is performed by the system in the target FPGA. Experiments have confirmed the correct operation of the method that was used. After the reduction mechanism was enabled, the total number of slices blocks that were occupied decreased to 47% of its initial value in the best case for the Xilinx Spartan3 (xc3s200) and the maximum frequency increased approximately 44% in the best case for Xilinx Spartan6 (xc6slx4).


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1450
Author(s):  
Xiang Wang ◽  
Zhun Zhang ◽  
Qiang Hao ◽  
Dongdong Xu ◽  
Jiqing Wang ◽  
...  

The hardware security of embedded systems is raising more and more concerns in numerous safety-critical applications, such as in the automotive, aerospace, avionic, and railway systems. Embedded systems are gaining popularity in these safety-sensitive sectors with high performance, low power, and great reliability, which are ideal control platforms for executing instruction operation and data processing. However, modern embedded systems are still exposing many potential hardware vulnerabilities to malicious attacks, including software-level and hardware-level attacks; these can cause program execution failure and confidential data leakage. For this reason, this paper presents a novel embedded system by integrating a hardware-assisted security monitoring unit (SMU), for achieving a reinforced system-on-chip (SoC) on ensuring program execution and data processing security. This architecture design was implemented and evaluated on a Xilinx Virtex-5 FPGA development board. Based on the evaluation of the SMU hardware implementation in terms of performance overhead, security capability, and resource consumption, the experimental results indicate that the SMU does not lead to a significant speed degradation to processor while executing different benchmarks, and its average performance overhead reduces to 2.18% on typical 8-KB I/D-Caches. Security capability evaluation confirms the monitoring effectiveness of SMU against both instruction and data tampering attacks. Meanwhile, the SoC satisfies a good balance between high-security and resource overhead.


Sign in / Sign up

Export Citation Format

Share Document