scholarly journals Modeling and Experiment of Electromagnetic Energy Harvester System by Using Dual Moving Mechanical Systems at Low Frequency Range.

2018 ◽  
Vol 217 ◽  
pp. 02006
Author(s):  
M. Z. A. Rahim ◽  
M. N. H. Hamid ◽  
Z. N. M. Yusuf ◽  
S. N. M. Soid ◽  
M. R. Ibrahim

This paper presented a concept of single degree of freedom (SDOF) electromagnetic vibration energy harvester device. This technique enable system to operate at wideband frequency range, low frequency and has multi-resonance frequencies. Each mechanical system operates at difference frequency where each system is attached with electromagnetic transducer components. the device is developed based on the parameter factors of vibration transmissibility from external vibration sources into the device through mathematical modelling. A prototype was tested by using vibration exciter and normal human walking. the fabricated device had showed multi-resonant behavior at 4.26 and 8.34 Hz during test. From experiment results, they have showed capability to operate at wide bandwidth frequency from 1.9 until 18.5 Hz at a periodic excitation of 0.04 g. the highest amount of rms voltage that has been produced about 108 mV with a maximum 78 µW average power across the 150 Ω load resistance. So, it has proven the dual-moving mechanical concept with low damping value in system has increased the operating bandwidth frequency and also increased the amount of output voltage from device.

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 91 ◽  
Author(s):  
Sofiane Bouhedma ◽  
Yongchen Rao ◽  
Arwed Schütz ◽  
Chengdong Yuan ◽  
Siyang Hu ◽  
...  

In this paper, we present a macroscale multiresonant vibration-based energy harvester. The device features frequency tunability through magnetostatic actuation on the resonator. The magnetic tuning scheme uses external magnets on linear stages. The system-level model demonstrates autonomous adaptation of resonance frequency to the dominant ambient frequencies. The harvester is designed such that its two fundamental modes appear in the range of (50,100) Hz which is a typical frequency range for vibrations found in industrial applications. The dual-frequency characteristics of the proposed design together with the frequency agility result in an increased operative harvesting frequency range. In order to allow a time-efficient simulation of the model, a reduced order model has been derived from a finite element model. A tuning control algorithm based on maximum-voltage tracking has been implemented in the model. The device was characterized experimentally to deliver a power output of 500 µW at an excitation level of 0.5 g at the respected frequencies of 63.3 and 76.4 Hz. In a design optimization effort, an improved geometry has been derived. It yields more close resonance frequencies and optimized performance.


2011 ◽  
Vol 403-408 ◽  
pp. 4231-4234 ◽  
Author(s):  
Khalid Ashraf ◽  
Mohd Haris Md Khir ◽  
John Ojur Dennis

This paper presents an impact-based frequency increased electromagnetic vibration energy harvester to scavenge energy in a low frequency environment. To realize the novel impact based frequency up-conversion mechanism, a coil has been elastically anchored with a platform on which four permanent magnets are arranged in such a way that a strong closed magnetic flux path, linking the coil, is formed. The proposed scavenger has two dynamics of motion. The first phase is a low frequency oscillation to absorb energy from ambient vibration during which both the coil and magnet act as proof mass and move collectively. The increased proof mass ensures maximization of absorbed energy. After crossing a certain clearance, the platform containing magnetic setup rigidly and supporting the coil elastically, collides with a rigid stopper and bounces back. As a result of this mechanical impact a high frequency oscillation is setup in the coil relative to the magnets during which energy is transferred to electrical domain by electromagnetic induction. A macro-prototype has been build to prove the proposed concept. Initial test results show that the proposed harvester generates a peak voltage of 1 volt across a load of 220 Ω at an excitation frequency of 5 Hz which corresponds to a peak power of 4.5 mW and average power of 660 µW.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7675
Author(s):  
Zhijie Feng ◽  
Han Peng ◽  
Yong Chen

A dual resonance vibration electromagnetic energy harvester (EMEH) is proposed in this paper to extend frequency range. Compared with the conventional dual resonance harvester, the proposed system realizes an enhanced “band-pass” harvesting characteristic by increasing the relative displacement between magnet and coil among two resonance frequencies with a significant improvement in the average harvested power. Furthermore, two resonant frequencies are decoupled in the proposed system, which leads to a more straightforward design. The proposed dual resonance EMEH is constructed with a tubular dual spring-mass structure. It is designed with a serpentine planar spring and the coil position is optimized for higher power density with an overall size of 53.9 cm3 for the dual resonance EMEH. It realizes an output power of 11 mW at the first resonant frequency of 58 Hz, 14.9 mW at the second resonant frequency of 74.5 Hz, and 0.52 mW at 65 Hz, which is in the middle of the two resonance frequencies. The frequency range of output power above 0.5 mW is from 55.8 Hz to 79.1 Hz. The maximum normalized power density (NPD) reaches up to 2.77 mW/(cm3·g2). Compared with a single resonance harvester design under the same topology and outer dimension at a resonant frequency of 74.5 Hz, the frequency range in the proposed EMEH achieves more than a 2× times extension. The proposed dual resonance EMEH also has more than 2 times wider frequency range than other state-of-art wideband EMEHs. Therefore, the proposed dual resonance EMEH is demonstrated in this paper for a high maximum NPD and higher NPD over a wide frequency range.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


2014 ◽  
Vol 644-650 ◽  
pp. 3560-3563
Author(s):  
Yu Liu ◽  
Xiao Yan He ◽  
Shen Liu ◽  
Ying Wu ◽  
Yi Ou

A single resonance frequency is the main factor of limiting vibration energy collector efficiency. In this paper, the multi degree of freedom oscillation adjusting bandwidth scheme is reported, designing a kind of new broadband vibration energy harvester, which has multi-mode energy acquisition, multi freedom vibration and broadband characteristics. Firstly, Broadband energy collector structure design. Secondly, Combining with the main vibration form, using the ANSYS carried out a detailed analysis of its working model. Finally, designing the prototype and doing some experimental verification, the results show that the designed energy collector with low frequency and wideband energy acquisition performance, the frequency domain of energy collection is 57.6 to 69.45HZ ,which break through the bottleneck of traditional single resonance frequency of energy acquisition, has a high value of theory and engineering application.


Sign in / Sign up

Export Citation Format

Share Document