scholarly journals Application of Python language in UOE molding simulation of pipeline steel

2018 ◽  
Vol 242 ◽  
pp. 01018
Author(s):  
Lian Yeda ◽  
Zhang Bing ◽  
Wu Renqiang

The ABAQUS plug-in interface based on Python language realizes geometrical design and automatic modeling of gas pipeline UOE molding, which solves the cumbersome problem of manually building complexgeometric models. In this study, the algorithm for different sizes of pipelines corresponding to different molds was designed. At the same time, as the ABAQUS kernel scripting program was written, a GUI interface was developed. The interface was used to realize automatic modeling and analysis and control of the calculation work, which laid a solid foundation for practical engineering application analysis.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tingrui Liu

Vibration control of the blade section of a wind turbine is investigated based on the sliding mode proportional-integral (SM-PI) method, i.e., sliding mode control (SMC) based on a PI controller. The structure is modeled as a 2D pretwisted blade section integrated with calculation of structural damping, which is subjected to flap/lead-lag vibrations of instability. To facilitate the hardware implementation of the control algorithm, the SM-PI method is applied to realize tracking for limited displacements and velocities. The SM-PI algorithm is a novel SMC algorithm based on the nominal model. It combines the effectiveness of the sliding mode algorithm for disturbance control and the stability of PID control for practical engineering application. The SM-PI design and stability analysis are discussed, with superiority and robustness and convergency control demonstrated. An experimental platform based on human-computer interaction using OPC technology is implemented, with position tracking for displacement and control input signal illustrated. The platform verifies the feasibility and effectiveness of the SM-PI algorithm in solving practical engineering problems, with online tuning of PI parameters realized by applying OPC technology.


2013 ◽  
Vol 361-363 ◽  
pp. 357-361
Author(s):  
Zhang Xiao Na ◽  
Jie Du

With energy and environmental issues are increasingly becoming the focus of global attention, building energy efficiency is one of the basic strategic planning for sustainable development in China, it is developing rapidly, and gets impressive results. Nevertheless, the building energy saving in our country that what has a lot of questions. For this reason, virtual simulation technology is made full use in building energy-saving and made practical engineering application analysis, a new method will be sock in building energy-saving design.


2014 ◽  
Vol 670-671 ◽  
pp. 474-478
Author(s):  
Xun Guo Zhu

The research achievement of strata movement law caused by subway construction and control standards was summarized and analyzed, and point out that this research on the laws of strata movement (or deformation) caused by subway construction mainly focused on three aspects. The first was research on the ground vertical settlement laws perpendicular to the tunnel excavation direction. The second was research on the ground vertical settlement laws parallel to the tunnel excavation direction. The third was research on the ground horizontal movement regularity perpendicular to the tunnel excavation direction. Through the analysis of the current research results, it is points out the shortages existing in the research, and deeply research in the future. It may provide the theoretical basis, also for practical engineering application provides a certain technical support.


Author(s):  
S. Li ◽  
J. Ruan ◽  
B. Meng ◽  
W. A. Jia ◽  
H. Y. Xie

A 2D electrohydraulic proportional directional valve is proposed, which integrates both direct and pilot operation of the valve. In this valve, the output magnetic force of the proportional solenoid is converted to rotate the spool through a thrust-torsion coupling and thus the pressure in the valve sensitive chamber is varied. The varied pressure exerted on the areas of the spool end produces a hydrostatic force to move the spool linearly, which will rotate the spool reversely. Theoretical analysis is carried to the proposed valve and the effects of the key geometric parameters on the dynamic characteristics of the 2D valve and stability are investigated. Experiments are also designed to access to the characteristics of the valve working under direct and pilot operation. The 2D electrohydraulic valve can work properly for both direct operation and pilot operation. The hysteresis and frequency response are measured and the results are within the acceptable range in practical engineering application required of the directional proportional valve.


2000 ◽  
Author(s):  
H. S. Tzou ◽  
J. H. Ding

Abstract Modeling distributed parameter systems (DPS) by electronic circuits and fabricating the complicated equivalent circuits to evaluate the system characteristics always poses many challenging research issues for years. Modeling and analysis of distributed sensing/control of smart structures and distributed structronic systems are even scarce. This paper is to present a technique to model distributed structronic systems with electronic circuits and to evaluate control behaviors with the fabricated equivalent circuits. Electrical analogies and analysis of distributed structronic systems is proposed and dynamics and control of beam/sensor/actuator systems are investigated. To determine the equivalent circuits and system parameters, higher order partial derivatives are simplified using the finite difference method; partial differential equations (PDE) are transformed to finite difference equations and further represented by electronic components and circuits. To provide better signal management and stability, active electronic circuit systems are designed and fabricated. Electric signals from the distributed system circuits (i.e., soft and hard) are compared with results obtained by classical theoretical and other (e.g., the finite element, and experimental) techniques.


2020 ◽  
Vol 22 (1) ◽  
pp. 195-206
Author(s):  
Y. Shireesha ◽  
B. Venkata Suresh ◽  
B. Sateesh

AbstractVibration is an undesirable phenomenon of ground vehicles like locomotives and vibration control of vehicle suspension system is an active subject of research. The main aim of the present work is to modeling and analysis of locomotive system. The simplified equations for dynamical locomotive are firstly established. Then the dynamical nature of the locomotive without control is investigated, and also active control suspension and passive control suspension are compare and discussed. The obtained simulation shows that suspension of the locomotive with feedback control could decrease the locomotive vibration. According to the above control strategy along with angular acceleration it also reduces the possibility of vibration of the locomotive body, to improves the stability of vehicle operation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dehui Ye ◽  
Jie Tan ◽  
Yabin Liang ◽  
Qian Feng

The pounding tuned mass damper (PTMD) is a novel passive damper that absorbs and dissipates energy by an auxiliary tuned spring-mass system. Viscoelastic materials are attached to the interface of the limitation collar in the PTMD so that the energy dissipation capacity can be enhanced. Previous studies have successfully demonstrated the effectiveness of PTMD at room temperature. However, in practice, the PTMD may face a broad temperature range, which can affect the mechanical properties of the viscoelastic materials. Thus, the study of vibration control effectiveness of PTMD at different temperatures is of great significance for its practical engineering application. In this paper, a series of experiments were conducted to investigate the performance of a PTMD in a temperature-controlled environment. A PTMD device was designed to suppress the vibration of a portal frame structure and tested across environmental temperatures ranging from –20°C to 45°C. The displacement reduction ratios demonstrated the temperature robustness of the PTMD. Additionally, the numerical results validated the accuracy of the pounding force model and the performance of PTMD.


Sign in / Sign up

Export Citation Format

Share Document