scholarly journals Simulation of spark ignition engine performance working on biogas hydrogen mixture

2018 ◽  
Vol 244 ◽  
pp. 03001
Author(s):  
Donatas Kriaučiūnas ◽  
Saugirdas Pukalskas ◽  
Alfredas Rimkus

Numerical simulations of Nissan Qashqai HR16DE engine with increased compression ratio from 10,7:1 to 13,5:1 was carried out using AVL BOOST software. Modelled engine work cycles while engine works with biogas (BG) and hydrogen (H2) mixtures. For biogas used mixture of 35 % carbon dioxide (CO2) and 65 % methane (CH4). Three mixtures of biogas with added 5 %, 10 % and 15 % H2 was made. The simulation of engine work cycles was performed at fully opened throttle and changing engine crankshaft rotation speeds: ne1 = 1500, ne2 = 3000, ne3 = 4500, ne4 = 6000 rpm. Simulation results demonstrated what adding hydrogen to biogas increase in-cylinder temperature and nitrogen oxides (NOx) concentration because of higher mixtures lower heating values (LHV) and better combustion process. Other emissions of carbon monoxide (CO) and hydrocarbons (HC) decreased while adding hydrogen due to the fact that hydrogen is carbon-free fuel.

2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Author(s):  
Jerald A. Caton

Abstract A thermodynamic cycle simulation was developed for a spark-ignition engine which included the use of multiple zones for the combustion process. This simulation was used to complete analyses for a commercial, spark-ignition V-8 engine operating at a part load condition. Specifically, the engine possessed a compression ratio of 8.1:1, and had a bore and stroke of 101.6 and 88.4 mm, respectively. A part load operating condition at 1400 rpm with an equivalence ratio of 1.0 was examined. Results were obtained for overall engine performance, for detailed in-cylinder events, and for the thermodynamics of the individual processes. In particular, the characteristics of the engine operation with respect to the combustion process were examined. Implications of the multiple zones formulation for the combustion process are described.


2011 ◽  
Vol 110-116 ◽  
pp. 3016-3024
Author(s):  
Moslem Yousefi ◽  
F. Ommi ◽  
Mehdi Farajpour

In this paper a three dimensional model of a spark ignition engine is presented using KIVA-3V code to investigate the combustion process of engine and gain a better understanding of what happens during this stage. The Whole engine cycle is simulated and the validity of the model is examined by experimental result of in-cylinder bulk pressure. the effect of ignition timing, spark plug location on the engine performance and pollutants of this engine has been investigated .The numerical results show that Relocating the spark plug near to the exhaust valves in order of taking advantage of higher temperature does not have the desired results. Using lean excessive air results in decreasing advancing the ignition results in an increase in the maximum bulk pressure and power of engine. Due to increase in maximum temperature of the combustion chamber the amount of NOx rises, too.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim ◽  
A. Sohrabi

The knock and combustion characteristics of CO, H2, CH4, and their mixtures were determined experimentally in a variable compression ratio spark ignition (SI) cooperative fuel research (CFR) engine. The significant effects of gaseous fuel mixtures containing H2 in enhancing the combustion and oxidation process of CH4 were examined. The unique combustion characteristics of CO in dry air and its distinct performance in mixtures with H-containing fuels were investigated. The addition of a simulated synthesis gas (2H2+CO) to CH4 was found to enhance the combustion process of the resulting mixture and lowers its knock resistance. The effectiveness of such an addition is slightly weaker than that of a comparable H2 addition but much stronger than that with CO addition only. A predictive model with detailed kinetic chemistry was used successfully to simulate SI engine operation fuelled with CH4, H2, CO, and their mixtures. The predicted engine performance and knock limits of CH4, H2, CO, and their mixtures agree well with experimental data with the exception around pure CO operation in dry air with the presence of small amounts of CH4 or H2. A remedial approach to improve the prediction of the knock limits of fuel mixtures containing mainly CO with a small amount of H-containing fuels such as H2 and CH4 was proposed and discussed.


Author(s):  
Vaibhav J. Lawand ◽  
Jerald A. Caton

The use of turbocharging systems for spark-ignition engines has seen increased interest in recent years due to the importance of fuel efficiency, and in some cases, increased performance. An example of a possible strategy is to use a smaller displacement engine with turbocharging rather than a larger engine without turbocharging. To better understand the tradeoffs and the fundamental aspects of a turbocharged engine, this investigation is aimed at determining the energy and exergy quantities for a range of operating conditions for a spark-ignition engine. A 3.8 liter automotive engine with a turbocharger and intercooler was selected for this study. Various engine performance and other output parameters were determined as functions of engine speed and load. For the base case (2000 rpm and a bmep of 1200 kPa), the bsfc was about 240 g/kW-h. At these conditions, the second law analysis indicated that the original fuel exergy was distributed as follows: 34.7% was delivered as indicated work, 16.9% was moved via heat transfer to the cylinder walls, 23.0% exited with the exhaust gases, 20.6% was destroyed during the combustion process, 2.5% was destroyed due to inlet mixing processes, and 1.9% was destroyed due to the exhaust processes. The turbocharger components including the intercooler were responsible for less than 1.0% of the fuel exergy destruction or transfer.


2021 ◽  
Vol 3 (2) ◽  
pp. 450-461
Author(s):  
Magdalena Szwaja ◽  
Mariusz Chwist ◽  
Stanislaw Szwaja ◽  
Romualdas Juknelevičius

Thermal processing (torrefaction, pyrolysis, and gasification), as a technology can provide environmentally friendly use of plastic waste. However, it faces a problem with respect to its by-products. Pyrolysis oil obtained using this technology is seen as a substance that is extremely harmful for living creatures and that needs to be neutralized. Due to its relatively high calorific value, it can be considered as a potential fuel for internal combustion spark-ignition engines. In order make the combustion process effective, pyrolysis oil is blended with ethanol, which is commonly used as a fuel for flexible fuel cars. This article presents results from combustion tests conducted on a single-cylinder research engine at full load working at 600 rpm at a compression ratio of 9.5:1, and an equivalence ratio of 1. The analysis showed improvements in combustion and engine performance. It was found that, due to the higher calorific value of the blend, the engine possessed a higher indicated mean effective pressure. It was also found that optimal spark timing for this ethanol-pyrolysis oil blend was improved at a crank angle of 2–3° at 600 rpm. In summary, ethanol-pyrolysis oil blends at a volumetric ratio of 3:1 (25% pyrolysis oil) can successfully substitute ethanol in spark-ignition engines, particularly for vehicles with flexible fuel type.


Author(s):  
Abdulrahman A ◽  
Adisa A. B. ◽  
Dandakouta H.

The power developed by an internal-combustion engine depends upon the fuel used for combustion. Fuels commonly used in internal combustion engines are derived from crude oil, which are depleting and are important sources of air pollution. In this study, n-butanol was used as an additive with gasoline as fuel in spark ignition engine. N-butanol exhibits good burning characteristics, contain oxygen, reduces some exhaust emissions and as well, has energy density and octane rating close to that of gasoline. The various blend rates (4, 8, 12, 16 and 20 percent by volume) were used in the engine performance analysis using a TD110-115 single cylinder, four-stroke air-cooled spark ignition engine test rig, under different loading conditions. An SV-5Q automobile exhausts gas analyzer was used to measure the concentration of gaseous emissions such as unburnt hydrocarbon (UHC), carbon monoxide (CO), and carbon dioxide (CO2 ) from the engine tail pipe. The results of engine performance showed reduction in the exhaust temperature was observed for the blends than to that of gasoline. It was observed that all the blends improved the brake thermal efficiency and exhibited high fuel consumption, lower specific energy consumption and lower emissions than gasoline. All the blends performed satisfactorily on spark-ignition engine without engine modification.


Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120454
Author(s):  
Mindaugas Melaika ◽  
Gilles Herbillon ◽  
Petter Dahlander

Sign in / Sign up

Export Citation Format

Share Document