scholarly journals Impact of Pyrolysis Oil Addition to Ethanol on Combustion in the Internal Combustion Spark Ignition Engine

2021 ◽  
Vol 3 (2) ◽  
pp. 450-461
Author(s):  
Magdalena Szwaja ◽  
Mariusz Chwist ◽  
Stanislaw Szwaja ◽  
Romualdas Juknelevičius

Thermal processing (torrefaction, pyrolysis, and gasification), as a technology can provide environmentally friendly use of plastic waste. However, it faces a problem with respect to its by-products. Pyrolysis oil obtained using this technology is seen as a substance that is extremely harmful for living creatures and that needs to be neutralized. Due to its relatively high calorific value, it can be considered as a potential fuel for internal combustion spark-ignition engines. In order make the combustion process effective, pyrolysis oil is blended with ethanol, which is commonly used as a fuel for flexible fuel cars. This article presents results from combustion tests conducted on a single-cylinder research engine at full load working at 600 rpm at a compression ratio of 9.5:1, and an equivalence ratio of 1. The analysis showed improvements in combustion and engine performance. It was found that, due to the higher calorific value of the blend, the engine possessed a higher indicated mean effective pressure. It was also found that optimal spark timing for this ethanol-pyrolysis oil blend was improved at a crank angle of 2–3° at 600 rpm. In summary, ethanol-pyrolysis oil blends at a volumetric ratio of 3:1 (25% pyrolysis oil) can successfully substitute ethanol in spark-ignition engines, particularly for vehicles with flexible fuel type.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6473
Author(s):  
Stanislaw Szwaja ◽  
Michal Gruca ◽  
Michal Pyrc ◽  
Romualdas Juknelevičius

Investigation of a new type of fuel for the internal combustion engine, which can be successfully used in both the power generation and the automotive industries, is presented in this article. The proposed fuel is a blend of 75% n-butanol and 25% glycerol. The engine tests conducted with this glycerol–butanol blend were focused on the performance, combustion thermodynamics, and exhaust emissions of a spark-ignition engine. A comparative analysis was performed to find potential similarities and differences in the engine fueled with gasoline 95 and the proposed glycerol–butanol blend. As measured, CO exhaust emissions increased, NOx emissions decreased, and UHC emissions were unchanged for the glycerol–butanol blend when compared to the test with sole gasoline. As regards the engine performance and combustion progress, no significant differences were observed. Exhaust temperature remarkably decreased by 3.4%, which contributed to an increase in the indicated mean effective pressure by approximately 4% compared to gasoline 95. To summarize, the proposed glycerol–butanol blend can be directly used as a replacement for gasoline in internal combustion spark-ignition engines.


2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


Author(s):  
Nicolas Iafrate ◽  
Anthony Robert ◽  
Jean-Baptiste Michel ◽  
Olivier Colin ◽  
Benedicte Cuenot ◽  
...  

Downsized spark ignition engines coupled with a direct injection strategy are more and more attractive for car manufacturers in order to reduce pollutant emissions and increase efficiency. However, the combustion process may be affected by local heterogeneities caused by the interaction between the spray and turbulence. The aim for car manufacturers of such engine strategy is to create, for mid-to-high speeds and mid-up-high loads, a mixture which is as homogeneous as possible. However, although injection occurs during the intake phase, which favors homogeneous mixing, local heterogeneities of the equivalence ratio are still observed at the ignition time. The analysis of the mixture preparation is difficult to perform experimentally because of limited optical accesses. In this context, numerical simulation, and in particular Large Eddy Simulation (LES) are complementary tools for the understanding and analysis of unsteady phenomena. The paper presents the LES study of the impact of direct injection on the mixture preparation and combustion in a spark ignition engine. Numerical simulations are validated by comparing LES results with experimental data previously obtained at IFPEN. Two main analyses are performed. The first one focuses on the fuel mixing and the second one concerns the effect of the liquid phase on the combustion process. To highlight these phenomena, simulations with and without liquid injection are performed and compared.


2018 ◽  
Vol 244 ◽  
pp. 03001
Author(s):  
Donatas Kriaučiūnas ◽  
Saugirdas Pukalskas ◽  
Alfredas Rimkus

Numerical simulations of Nissan Qashqai HR16DE engine with increased compression ratio from 10,7:1 to 13,5:1 was carried out using AVL BOOST software. Modelled engine work cycles while engine works with biogas (BG) and hydrogen (H2) mixtures. For biogas used mixture of 35 % carbon dioxide (CO2) and 65 % methane (CH4). Three mixtures of biogas with added 5 %, 10 % and 15 % H2 was made. The simulation of engine work cycles was performed at fully opened throttle and changing engine crankshaft rotation speeds: ne1 = 1500, ne2 = 3000, ne3 = 4500, ne4 = 6000 rpm. Simulation results demonstrated what adding hydrogen to biogas increase in-cylinder temperature and nitrogen oxides (NOx) concentration because of higher mixtures lower heating values (LHV) and better combustion process. Other emissions of carbon monoxide (CO) and hydrocarbons (HC) decreased while adding hydrogen due to the fact that hydrogen is carbon-free fuel.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aan Yudianto ◽  
Peixuan Li

The proper design of the flywheel undeniably determines in tuning the engine to confirm the better output engine performance. The aim of this study is to mathematically investigate the effect of various values of the compression ratio on some essential parameters to determine the appropriate value for the flywheel dimension. A numerical calculation approach was proposed to eventually determine the dimension of the engine flywheel on a five-cylinder four-stroke Spark Ignition (SI) engine. The various compression ratios of 8.5, 9, 9.5, 10, 10.5, and 11 were selected to perform the calculations. The effects of compression ratio on effective pressure, indicated mean effective pressure (IMEP), dynamic irregularity value of the crankshaft, and the diameter of the flywheel was clearly investigated. The study found that 2.5 increment value of the compression ratio significantly increases the effective pressure of about 41.53% on the starting of the expansion stroke. While at the end of the compression stroke, the rise of effective pressure is about 76.67%, and the changes in dynamic irregularity merely increase by about 1.79%. The same trend applies to the flywheel diameter and width, which increases 2.08% for both.


2021 ◽  
Vol 14 (2) ◽  
pp. 125-129
Author(s):  
Gatot Setyono ◽  
Navik Kholili

Ethanol is an alternative fuel to replace fossil fuels. Ethanol's high octane value can substitute for power in spark-ignition engines (SI). Gasoline mixed with ethanol will reduce the calorific value generated and intensify the combustion process in the combustion chamber. Through the engine performance test, we can find out the increase in the performance of the SI engine. Several essential variables can improve engine performance, such as gasoline-ethanol variations, iridium spark plugs, and hydroxy gas generators (HHO). This research uses an experimental method by utilizing gasoline (octane-92)-ethanol variations (35%, 45%, and 55% v/v) with the intake of hydroxy gas during the combustion process. The SI automatic transmission engine has a capacity of 124.8 cubic centimeters (one cylinder-four stroke), a compression ratio of 11/1, fuel injection, and iridium spark plugs. Engine performance test using chassis dyno test with engine speed variations of 4000-9000 rpm. This study resulted in optimal performance on a 55% increase in gasoline-ethanol mixture with an intensify in output-power, pressure, and thermal efficiency at an engine-speed of 8000 rpm. It is contrary to the specific fuel consumption has decreased.


Author(s):  
Jerald A. Caton

Abstract A thermodynamic cycle simulation was developed for a spark-ignition engine which included the use of multiple zones for the combustion process. This simulation was used to complete analyses for a commercial, spark-ignition V-8 engine operating at a part load condition. Specifically, the engine possessed a compression ratio of 8.1:1, and had a bore and stroke of 101.6 and 88.4 mm, respectively. A part load operating condition at 1400 rpm with an equivalence ratio of 1.0 was examined. Results were obtained for overall engine performance, for detailed in-cylinder events, and for the thermodynamics of the individual processes. In particular, the characteristics of the engine operation with respect to the combustion process were examined. Implications of the multiple zones formulation for the combustion process are described.


2016 ◽  
Vol 822 ◽  
pp. 190-197
Author(s):  
Obeid Zuhair H. Obeid ◽  
Constantin Pana ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Iulius Bondoc

The use of bioethanol as alternative fuel for automotive supercharged spark ignition engines is required especially for to respect the pollutant norms which become more and more severe, especially for NOx emissions.The general objective of the researches is improving of a automotive supercharged spark ignition engine efficiency, improving performance of power and torque and decreasing of the emissions level by the use of bioethanol. Bioethanol is so a very good alternative fuel for SI engines because of its better combustion proprieties comparative to the gasoline as a good cooling agent of the intake air due to its high vaporization heat.The paper presents results of some theoretical and experimental investigations on a 1.5 L supercharged SI engine fuelled with gasoline-bioethanol blends. The investigations show that the improvement of the combustion process by use the bioethanol at the supercharged spark ignition engine leads to the reduction of BSFC, to the accentuated reduction CO and HC due to a lower C content and better combustion properties of the bioethanol. In same time, the NOx emissions level significantly decreases because of the local cooling effect produced by bioethanol vaporization.


Author(s):  
Shawn M. Grannell ◽  
Dennis N. Assanis ◽  
Stanislav V. Bohac ◽  
Donald E. Gillespie

An overall stoichiometric mixture of air, gaseous ammonia, and gasoline was metered into a single cylinder, variable compression ratio, supercharged cooperative fuel research (CFR) engine at varying ratios of gasoline to ammonia. The engine was operated such that the combustion was knock-free with minimal roughness for all loads ranging from idle up to a maximum load in the supercharge regime. For a given load, speed, and compression ratio, there was a range of ratios of gasoline to ammonia for which knock-free, smooth firing was obtained. This range was investigated at its rough limit and also at its maximum brake torque (MBT) knock limit. If too much ammonia was used, then the engine fired with an excessive roughness. If too much gasoline was used, then knock-free combustion could not be obtained while the maximum brake torque spark timing was maintained. Stoichiometric operation on gasoline alone is also presented, for comparison. It was found that a significant fraction of the gasoline used in spark ignition engines could be replaced with ammonia. Operation on about 100% gasoline was required at idle. However, a fuel mix comprising 70% ammonia∕30% gasoline on an energy basis could be used at normally aspirated, wide open throttle. Even greater ammonia to gasoline ratios were permitted for supercharged operation. The use of ammonia with gasoline allowed knock-free operation with MBT spark timing at higher compression ratios and higher loads than could be obtained with the use of gasoline alone.


Author(s):  
Mohd Fitri Arshad ◽  
◽  
Muhammad Faris Ahmad ◽  
Amir Khalid ◽  
Izuan Amin Ishak ◽  
...  

In an internal combustion engine, performance, efficiency and emission formation depends on the formation of air-fuel mixture inside the engine cylinder. The fluid flow dynamics plays an important role for air-fuel mixture preparation to obtain the better engine combustion, performance and efficiency. This review article discuss the rotating flow (swirl and tumble) in premixed spark-ignition engine and its effect on turbulence generation and flame propagation. Rotating flow can substantially increase turbulence intensity for the duration of the combustion period. This review paper discusses the in-cylinder swirl and tumble flow that affects air induction during the combustion process in internal combustion engine. Alternatively, this study using computer simulation (Computational Fluid Dynamic, CFD) which offer the opportunity to carry out repetitive parameter studies. An integration-type flowmeter (IFM) also has been used which consists of ultrasonic flowmeter, that integrates the flowrate during the intake process, gives accurate measurements regardless of sampling time and frequency. Research parameter in this study was swirl and tumble that represents the fluid flow behavior occurred inside combustion chamber. Fuel injection and air mass also were the important parameters that have been discussed about in air induction process. The results obtain from the numerical analysis can be employed to examine the homogeneity of air-fuel mixture structure for better combustion process and engine performance.


Sign in / Sign up

Export Citation Format

Share Document