scholarly journals Analysis of the velocity diagrams of impellers of centrifugal compressor stages after the preliminary design

2018 ◽  
Vol 245 ◽  
pp. 04004 ◽  
Author(s):  
Aleksandr Drozdov ◽  
Alexey Rekstin

Preliminary design is an important stape in the development of centrifugal compressors and compressor stages. Basically for this purpose, various recommendations on the choice of the flow path dimensions are applied. Researchers of the Research and Development Laboratory “Gas dynamics of turbomachines” prof. Yu.B. Galerkin and A.F. Rekstin analyzed and summarized the dimensions of flow paths of 124 impellers. On the basis of this analysis, formulas were proposed for choosing the flow path dimensions of the centrifugal compressor stages, which were included in the preliminary design program. The formulas used are designed for relative Mach number of 0.7 and isentropic coefficient of 1.4. The correct application of these formulas for other Mach numbers and isentropic coefficient required development of an appropriate approach and algorithm for adjusting the height of the impeller blades at the outlet. Calculations of gas-dynamic characteristics using the Universal Modeling Method showed the need for selecting a coefficient that takes into account the influence of viscosity to obtain the required pressure characteristics of the compressor stage. This problem was also solved in the program of preliminary design. To check the quality of preliminary design, the results were verified using a non-viscous quasi-three-dimensional calculation program. Three stages were designed for parameters different to those used for development of preliminary design formulas. Analysis of the velocity diagrams of the impeller blades and distribution of meridional velocities showed good results of the preliminary design.

Author(s):  
Ihor Palkov ◽  
Sergii Palkov ◽  
Oleh Ishchenko ◽  
Olena Avdieieva

The paper considers the main principles that are used to develop the flow paths (FP) of the high-pressure cylinders (HPC), intermediate-pressure cylinders (IPC), and low-pressure cylinders (LPC) for the K-1250-6.9/25 turbine unit. It describes approaches to the numerical experiment when designing flow paths, the advantage of which is lower labor, time and financial costs and higher informativeness compared to the physical experiment on flow paths. When designing the flow paths of high- and intermediate-pressure cylinders (HIPC), the numerical experiment is performed using the three-dimensional viscous-flow method. For this purpose, a three-dimensional model of the blade system in the flow path is built, which consists of a large number of finite volumes (elements) in the shape of hexagons, in each of which the integration of the equations of gas dynamics is performed. When developing LPC, the method of parameterization and analytical profiling of the blade crown sections is used, where the profiles are described by the curves of the fourth and fifth orders with the condition of providing the minimum value of the maximum curvature and monotonicity of variation of the three-dimensional blade geometry along height. This method allows obtaining the optimal profiles of the cross sections of the blades, which correspond to the current flow lines to the fullest extent, and minimizing the profile energy losses when the flow flows around the blades.


1998 ◽  
Author(s):  
R. P. Clayton ◽  
W. U. A. Leong ◽  
R. Sanatian ◽  
R. I. Issa ◽  
G. Xi

Numerical analysis of the three-dimensional turbulent flow in an unshrouded impeller of a high-speed centrifugal compressor has been conducted using the multi-purpose CFD code STAR-CD. The work presented in this paper concentrates mainly on assessing the effects of the modelling of the actual spinner geometry on the quality of the predictions as compared to the often used practice of simplifying the inlet geometry. Furthermore, the contribution of detailed modelling of the flow in the tip clearance is studied using a two-layer k-ε turbulence model. As well as a qualitative analysis of the throughflow and tip leakage, a systematic quantitative comparison between the predicted and measured mean velocities and flow angles is presented.


2011 ◽  
Vol 338 ◽  
pp. 106-110
Author(s):  
Guang Li ◽  
Wen Tie Niu ◽  
Da Wei Zhang ◽  
Wei Guo Gao

The automatic generation of flow path is the key and most difficult task in Hydraulic Manifold Blocks (HMB) design. This paper divides the HMB layout space into grids, and sets the HMB boundaries and existing flow paths to obstacles, and the paths generated using maze algorithm are regarded as the initial population of genetic algorithm. The optimal path with the shortest path and least turnings can be obtained using genetic algorithm. The ports of flow path can be connected after the generation of technical holes based on the blind holes. The design parameters of holes, such as starting point coordinates, orientations and depths, can be obtained through a series of algorithms, and then drive the secondary development system HMBDesigner based on SolidWorks to generate three-dimensional solid model. This paper also discusses the generation method of multi-port flow path and multiple flow paths.


Author(s):  
Hong-Won Kim ◽  
Kook-Taek Oh ◽  
Sang-Hak Ghal ◽  
Ji-Soo Ha

For the centrifugal compressor aerodynamic design of a turbocharger, first of all, the works for system matching to the engine specification must be preceded. Then, mean line design together with performance prediction should be carried out for preliminary design. In the mean line prediction, a slip factor is adopted as a function of flow coefficient and geometry instead of Wiesner’s equation, and it is found that the predicted result of slip magnitude is more accurate than that of conventional slip factor. Also, three-dimensional blade profile shape is generated on the basis of the preliminary design. The Navier-Stokes Equation solver with a turbulent model is used to find whether three-dimensionally designed geometry is reasonable by analyzing loading distribution of the blade. By investigating diffuser flow field of the simulated result, the diffuser inlet and exit angles were modified for the flow to move smoothly along the diffuser geometry. Modified performance prediction results shows better than those of original specification. Consequently, off design performance prediction results and numerical simulation result show good agreement with the experimental data. The modified design results show more increased compression ratio and efficiency than those of previous design results. The increased choke margin has made a stable operating range larger.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2021 ◽  
Vol 10 (2) ◽  
pp. 30
Author(s):  
Radwan S. Abujassar ◽  
Husam Yaseen ◽  
Ahmad Samed Al-Adwan

Nowadays, networks use many different paths to exchange data. However, our research will construct a reliable path in the networks among a huge number of nodes for use in tele-surgery using medical applications such as healthcare tracking applications, including tele-surgery which lead to optimizing medical quality of service (m-QoS) during the COVID-19 situation. Many people could not travel due to the current issues, for fear of spreading the covid-19 virus. Therefore, our paper will provide a very trusted and reliable method of communication between a doctor and his patient so that the latter can do his operation even from a far distance. The communication between the doctor and his/her patient will be monitored by our proposed algorithm to make sure that the data will be received without delay. We test how we can invest buffer space that can be used efficiently to reduce delays between source and destination, avoiding loss of high-priority data packets. The results are presented in three stages. First, we show how to obtain the greatest possible reduction in rate variability when the surgeon begins an operation using live streaming. Second, the proposed algorithm reduces congestion on the determined path used for the online surgery. Third, we have evaluated the affection of optimal smoothing algorithm on the network parameters such as peak-to-mean ratio and delay to optimize m-QoS. We propose a new Smart-Rout Control algorithm (s-RCA) for creating a virtual smart path between source and destination to transfer the required data traffic between them, considering the number of hops and link delay. This provides a reliable connection that can be used in healthcare surgery to guarantee that all instructions are received without any delay, to be executed instantly. This idea can improve m-QoS in distance surgery, with trusted paths. The new s-RCA can be adapted with an existing routing protocol to track the primary path and monitor emergency packets received in node buffers, for direct forwarding via the demand path, with extended features.


2020 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Ahmed Allali ◽  
Sadia Belbachir ◽  
Ahmed Alami ◽  
Belhadj Boucham ◽  
Abdelkader Lousdad

AbstractThe objective of this work lies in the three-dimensional study of the thermo mechanical behavior of a blade of a centrifugal compressor. Numerical modeling is performed on the computational code "ABAQUS" based on the finite element method. The aim is to study the impact of the change of types of blades, which are defined as a function of wheel output angle β2, on the stress fields and displacements coupled with the variation of the temperature.This coupling defines in a realistic way the thermo mechanical behavior of the blade where one can note the important concentrations of stresses and displacements in the different zones of its complex form as well as the effects at the edges. It will then be possible to prevent damage and cracks in the blades of the centrifugal compressor leading to its failure which can be caused by the thermal or mechanical fatigue of the material with which the wheel is manufactured.


Sign in / Sign up

Export Citation Format

Share Document