scholarly journals Mechanical properties of kenaf fibrous pulverized fuel ash concrete

2018 ◽  
Vol 250 ◽  
pp. 05007
Author(s):  
Norazura Mizal Azzmi ◽  
Jamaludin Mohamad Yatim ◽  
Hazlan Abdul Hamid ◽  
Azmahani Abdul Aziz ◽  
Adole Michael Adole

The main objective of the experimental work is to identify the mechanical properties of Kenaf Fiber incorporate with Ordinary Portland Cement (OPC) and Pulverised Fuel Ash (PFA) in the mix proportions of concrete. Kenaf Fibrous Concrete (KFC) and Kenaf Fibrous Pulverised Fuel Ash Concrete (KFPC) will be measured on physical and mechanical properties in order to investigate the suitability of this natural fiber as a composite material. A comparison of properties between these two composites will determine the density, workability, compressive, tensile, and flexural strength of the concrete. Eight different mixes with varying percentage of Kenaf fiber were prepared with 30N/mm2 strength at 28days ,56 days and 90 days. Short fiber with 25mm and 50mm length were randomly distribute in composite to enhance the tensile and durability. PFA was obtained by the process of burning in the Power Station Coal Ash at Tanjung Bin, Johor. The unburning powder from the process is called as a PFA generally suitable for cement replacement in the concrete mix. The pozzolanic reaction will improve the adhesion of cement gel, hence increased the properties of concrete in a long-term strength development. The result shows that the inclusion of Kenaf fiber improve tensile strength of composite, furthermore the 25% PFA mix increase the durability of concrete.

2019 ◽  
Vol 280 ◽  
pp. 04013
Author(s):  
Irfan Prasetia ◽  
M. Fahmi Rizani

Nowadays, PLTU Asam-Asam produced enormous amounts of combustion waste in the form of coal ash. On the contrary, only a little effort has been made to utilize coal ash from PLTU Asam-Asam, especially from the research side. In fact, due to its siliceous material, when reacting with CH in concrete, will form CSH hence improves concrete strength. In this study, in order to analyze the physical and mechanical properties of concrete using fly ash from PLTU Asam-Asam, 54 concrete samples were prepared according to SNI-03-2834-2000. The examination of concrete samples workability was conducted based on the slump test according to SNI 1972:2008. Moreover, the compressive tests were carried out in accordance with SNI 1974:2011. The slump test results show that the pozzolanic reaction of fly ash contributes to the improvement of concrete workability. Furthermore, the variation in w/b ratio was also affecting the results of the slump test. As for the compressive strength, in general speaking, the replacement ratio of 30% of cement with fly ash in concrete could produce concrete strength up to 30 Mpa. It is also important to note that due to the pozzolanic reactions tends to delayed, it is expected that at later ages (above 28 days) concrete with fly ash will gain much more strength compared to ordinary concrete.


Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1252 ◽  
Author(s):  
Bryn Crawford ◽  
Sepideh Pakpour ◽  
Negin Kazemian ◽  
John Klironomos ◽  
Karen Stoeffler ◽  
...  

2021 ◽  
pp. 004051752110432
Author(s):  
S Mohd Izwan ◽  
SM Sapuan ◽  
MYM Zuhri ◽  
AR Muhamed

The main purpose of this work is to investigate the effect of benzoyl treatment on the performance of sugar palm/kenaf fiber-reinforced polypropylene hybrid composites. Water absorption tests were carried out to confirm the effect of benzoylation treatment toward fabricating a more hydrophobic behavior of the hybrid composites. Both treated and untreated composites that have 10 wt.% of fiber loading with three different fiber ratios between sugar palm and kenaf (7:3, 5:5, 3:7) were analyzed. Physical and mechanical properties such as tensile, flexural, and impact strength were determined from this study. Morphological properties were obtained using scanning electron microscopy (SEM). It was found that the tensile strength of sugar palm/kenaf-reinforced polypropylene hybrid composites was improved with the treatment of benzoyl with a value of 19.41 MPa. In addition, hybrid composite with treated sugar palm and kenaf fiber T-SP3K7 recorded the highest impact and flexural strength of 19.4 MPa and 18.4 MPa, respectively. In addition, SEM demonstrated that surface treatment enhanced the mechanical properties of the hybrid composites. Overall, it can be suggested that benzoyl-treated composites with a higher volume of kenaf fiber than sugar palm fiber will improve the mechanical characteristics of the hybrid composites.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1643 ◽  
Author(s):  
Nabilah Afiqah Mohd Radzuan ◽  
Dulina Tholibon ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Che Hassan Che Haron

Automotive parts, including dashboards and trunk covers, are now fabricated through a compression-molding process in order to produce lightweight products and optimize fuel consumption. However, their mechanical strength is not compromised to avoid safety issues. Therefore, this study investigates kenaf-fiber-reinforced polypropylene composites using a simple combing approach to unidirectionally align kenaf fibers at 0°. The kenaf composite was found to withstand a maximal temperature of 120 °C. The tensile and flexural strengths of the aligned kenaf composites (50 and 90 MPa, respectively) were three times higher than those of the commercialized Product T (between 39 and 30.5 MPa, respectively) at a temperature range of 90 to 120 °C. These findings clearly showed that the mechanical properties of aligned kenaf fibers fabricated through the combing technique were able to withstand high operating temperatures (120 °C), and could be used as an alternative to other commercial natural-fiber products.


2020 ◽  
Vol 1010 ◽  
pp. 244-249
Author(s):  
Sani Garba Durumin Iya ◽  
Mohamad Zaky Noh ◽  
Norazreen Sharip ◽  
Siti Noraiza Ab Razak ◽  
A.R.M. Warikh ◽  
...  

Palm oil fuel ash (POFA) is solid waste from palm oil industries discarded after burning of shell, fiber, kernel and empty fruit bunches to heat boiler and generate electricity. A standard porcelain consisting of clay, feldspar and quartz is produced by sintering at temperature between 1300 °C to 1400 °C for toughness and translucency. This research developed a prediction model for optimum physical and mechanical properties of porcelain by addition of Fe2O3 at 5 wt.%. Quartz was replaced with POFA powder at 15 wt.% and Fe2O3 was also added at 5 wt.% of POFA mixed with others porcelain composition. Then the powder was dry pressed into pellet at 91 MPa and the samples were sintered at 1150 °C. The bulk density, compressive strength and Vickers microhardness were found to increase by addition of Fe2O3 at 5 wt.%. Prediction model was developed and from the predicted values it is revealed that, the model is efficient and good for the purpose of this research.


2018 ◽  
Vol 917 ◽  
pp. 37-41 ◽  
Author(s):  
Muhammad Khusairy bin Bakri ◽  
Elammaran Jayamani ◽  
Soon Kok Heng ◽  
Akshay Kakar

In this short review paper, the physical and mechanical properties of acacia wood, poly lactic acid (PLA) and polyhydroxyalkanoates (PHA) were analyzed. Existing factors that affect the mechanical properties of natural fiber composites were investigated and identified. By knowing these factors, a possibility and potentiality in implementing the natural acacia wood reinforced material with hybrid polymer were discussed. It was found that the acacia wood had the potential to re-condition soil and have the potential to become reinforced materials in hybrid polymer composites. In addition, using fully biodegradable polymer such as PLA and PHA made it sustainable and environmentally friendly.


Author(s):  
Ivan Y. TANG ◽  
Dickson Y. S. YAN ◽  
Irene M. C. LO ◽  
Tongzhou LIU

This study aimed to maximize the utilization of contaminated marine mud and sediment for beneficial reuse by solidification/stabilization (S/S) treatment with cement and pulverized fuel ash (PFA). For the purposes of waste maximization and enhancing the mechanical property of the S/S mixtures, mixing 75% by mass of either contaminated marine mud or sediment with 20% and 5% of cement and PFA, respectively, was found to be the optimal mix design. Their unconfined compressive strengths reached up to 8.32 MPa and 4.47 MPa, respectively. Apart from the mechanical property, according to the U.S.EPA, the TCLP results show that all regulated heavy metals were immobilized to a safe level and are available for engineering application such as fill material. The results of XRD reveal that the formation of CSH gel in the S/S treated mud and sediment is responsible for the strength development and heavy metal immobilization.


Author(s):  
Mengyuan Liao ◽  
Umaru Semo Ishiaku ◽  
Zainal Arifin Mohd Ishak ◽  
Guijun Xian ◽  
Hiroyuki Hamada

With an industrial increasing interest in sustainable, eco-efficient and green material’s application, natural fiber in polymer composite is guided to develop rapidly, especially kenaf nonwovens in making automotive interior trim parts with its comparative excellent strength and renewability. The objectives of this research are to investigate the environmental degradation behavior on the physical and mechanical properties of kenaf/unsaturated polyester nonwoven composites (KUNC) with special reference to the influence of different geographic natural climate ageing conditions. KUNC was prepared with needle-punched kenaf’s impregnation into unsaturated polyester resin assisted with vacuum oven following by hand lay-up molding. Natural environmental degradation was performed on KUNC by exposing the specimens to Kyoto(Japan), Shanghai(China) and Harbin(China) for a period of 3 months. Weight change and mechanical properties of degraded KUNCs in former three geographic positions in terms of tensile, flexural, impact and fracture toughness were measured instrumentally for ageing effect discussion and comparison. As expected, the aged specimens in those different positions all showed the dropped mechanical properties with weight increasing in varying degrees. Furthermore, the result of degradation level comparison among different positions revealed the positive correlation between increased weight percentages and dropped mechanical properties. In other words, dropped mechanical properties of the degraded composites with increasing weight were attributed to the effect of water, which deteriorates the interfacial properties of composites.


Sign in / Sign up

Export Citation Format

Share Document