scholarly journals Analysis of fly ash from PLTU Asam-Asam as a construction material in terms of its physical and mechanical properties

2019 ◽  
Vol 280 ◽  
pp. 04013
Author(s):  
Irfan Prasetia ◽  
M. Fahmi Rizani

Nowadays, PLTU Asam-Asam produced enormous amounts of combustion waste in the form of coal ash. On the contrary, only a little effort has been made to utilize coal ash from PLTU Asam-Asam, especially from the research side. In fact, due to its siliceous material, when reacting with CH in concrete, will form CSH hence improves concrete strength. In this study, in order to analyze the physical and mechanical properties of concrete using fly ash from PLTU Asam-Asam, 54 concrete samples were prepared according to SNI-03-2834-2000. The examination of concrete samples workability was conducted based on the slump test according to SNI 1972:2008. Moreover, the compressive tests were carried out in accordance with SNI 1974:2011. The slump test results show that the pozzolanic reaction of fly ash contributes to the improvement of concrete workability. Furthermore, the variation in w/b ratio was also affecting the results of the slump test. As for the compressive strength, in general speaking, the replacement ratio of 30% of cement with fly ash in concrete could produce concrete strength up to 30 Mpa. It is also important to note that due to the pozzolanic reactions tends to delayed, it is expected that at later ages (above 28 days) concrete with fly ash will gain much more strength compared to ordinary concrete.

2018 ◽  
Vol 250 ◽  
pp. 05007
Author(s):  
Norazura Mizal Azzmi ◽  
Jamaludin Mohamad Yatim ◽  
Hazlan Abdul Hamid ◽  
Azmahani Abdul Aziz ◽  
Adole Michael Adole

The main objective of the experimental work is to identify the mechanical properties of Kenaf Fiber incorporate with Ordinary Portland Cement (OPC) and Pulverised Fuel Ash (PFA) in the mix proportions of concrete. Kenaf Fibrous Concrete (KFC) and Kenaf Fibrous Pulverised Fuel Ash Concrete (KFPC) will be measured on physical and mechanical properties in order to investigate the suitability of this natural fiber as a composite material. A comparison of properties between these two composites will determine the density, workability, compressive, tensile, and flexural strength of the concrete. Eight different mixes with varying percentage of Kenaf fiber were prepared with 30N/mm2 strength at 28days ,56 days and 90 days. Short fiber with 25mm and 50mm length were randomly distribute in composite to enhance the tensile and durability. PFA was obtained by the process of burning in the Power Station Coal Ash at Tanjung Bin, Johor. The unburning powder from the process is called as a PFA generally suitable for cement replacement in the concrete mix. The pozzolanic reaction will improve the adhesion of cement gel, hence increased the properties of concrete in a long-term strength development. The result shows that the inclusion of Kenaf fiber improve tensile strength of composite, furthermore the 25% PFA mix increase the durability of concrete.


2010 ◽  
Vol 168-170 ◽  
pp. 1426-1431
Author(s):  
Zhi Qing Li ◽  
Zhen Dong Cui ◽  
Yan Ping Wang ◽  
Li Chao Wang ◽  
Duo Zhong

According to the typical loess in Shuozhou in Shanxi province, tests involved in compaction characteristics, shearing strength characteristics and disintegration are carried out by using loess and three kinds of improved loess, namely lime and fly-ash, lime and cement, cement and fly-ash. The best improved soil method is selected. The test results indicate that the compact hybrid structure is formed by fly ash and loess. The activity of fly ash is activated as a result of the lime mixing. A series of hydration reaction prompt the intensity of modified loess. And the physical and mechanical properties of improved loess are improved noticeably.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Fengky Satria Yoresta

This research is aimed to determine physical and mechanical properties of Ebony wood as a construction material. The physical and mechanical properties test is conducted based on ASTM D 143-94 code. The mean value of moisture content and specific gravity of Ebony wood is obtained 12,90% and 0,92 gr.cm-3 respectively. Meanwhile MOE, bending strength, compressive strength parallel to grain, shear strength, and tensile strength parallel to grain are 180.425,87 kg.cm-2; 1656,22 kg.cm-2; 861,55 kg.cm-2; 119,61 kg.cm-2; dan 2.319,03 kg.cm-2 respectively. Based on the test results, it can be concluded that Ebony wood is classified to Strength Class I due to PKKI 1961, so it can be recommended for use in heavy construction such as bridge and building structures Penelitian ini bertujuan menentukan sifat fisis dan mekanis kayu  Ebony sebagai material konstruksi. Pengujian sifat fisis dan mekanis dilakukan berdasarkan standar ASTM D 143-94. -3Nilai kadar air rata-rata kayu Ebony diperoleh sebesar 12,90% dan berat jenis 0,92 gr.cm . Sementara nilai rata-rata MOE, kuat lentur, kuat tekan sejajar serat, kuat geser, dan kuat tarik -2 -2 -2sejajar serat berturut-turut adalah 180.425,87 kg.cm ; 1656,22 kg.cm ; 861,55 kg.cm ; -2 -2119,61 kg.cm ; dan 2.319,03 kg.cm . Berdasarkan hasil penelitian dapat disimpulkan bahwa kayu Ebony tergolong kelas kuat I menurut PKKI 1961, sehingga dapat direkomendasikan untuk digunakan pada konstruksi-konstruksi berat seperti jembatan dan struktur bangunan.


Author(s):  
Nisrine El Fami ◽  
Hind Agourrame ◽  
Nacer Khachani ◽  
Ali Boukhari ◽  
Adeljebbar Diouri

The Moroccan cement industry is looking for new processes to effectively minimize the high energy costs associated to cement manufacturing. This work presents the effect of three types of limestone with different chemical compositions and different CaCO3 contents on the physical and mechanical properties of resulting composite cements by the addition of fly ash in the proportions by weight of: 5 % and 10 %. The samples are studied in order to evaluate the interaction between different types of limestone and fly ash. Ternary cements based on fly ash-limestone-clinker induce a significant prolongation of the setting time compared to binary cements based on limestone-clinker. The substitution of clinker by limestone induces an improvement in mechanical strength compared to ternary cements in the first days; at 28 days, cements prepared with fly ashes reach significant strength due to their pozzolanic reaction.


2020 ◽  
Vol 26 (1) ◽  
pp. 9-16
Author(s):  
Yulita Arni Priastiwi ◽  
Arif Hidayat ◽  
Dwi Daryanto ◽  
Zidny Salamsyah Badru

The presence of white soil in a geopolymer mortar affects the physical and mechanical properties of the mortar itself, especially in compressive strength, density and modulus of elasticity produced. Geopolymer mortar composed of fly ash, sand, water, and NaOH which acts as an alkaline activator compared to mortar from the same material, but white soil from Kupang is added as a substitution of fly ash. Specimens are made in six variations. Geopolymer mortar composers using a ratio of 1 binder: 3 sand with w/b of 0.5. Binder composed of fly ash with white soil substitution of 0; 5; 10; 15; 20 and 30% by weight of fly ash. An activator NaOH 8M solution was added to the mixture. Both white soil and fly ash pass of sieve no. 200 with a moisture content of 0%. Mortar made measuring 5x5x5 cm. The mortar was treated by the oven of method at 60 oC for 24 hours until the mortar does not change in weight. The test results show geopolymer mortar with 15% substitution of white soil to fly ash has the highest compressive strength, density and modulus of elasticity among other variations. In all mortar variations, compressive strength at 14 days has reached 75% of strength at 28 days.


2014 ◽  
Vol 984-985 ◽  
pp. 693-697
Author(s):  
K. Rekha ◽  
R. Thenmozhi

The usage of waste materials in making concrete gives a satisfactory solution to some of the problems related to waste management and environmental concerns. In the development of blended cements, some of the Agro wastes such as sugarcane bagasse ash, rice husk ash and wheat straw ash are used as pozzolanic materials. Few studies have been reported on the use of bagasse ash (BA) as partial cement replacement material. This research aims to study the physical and mechanical properties of hardened concrete prepared with bagasse ash as partial replacement material for cement are reported. The Portland cement was replaced with BA in the ratio of 0%, 5%, 10%, 15% and 20% of weight of cement. The compressive strength, splitting tensile strength and flexural strength of concrete at the age of 28 days were investigated. From the test results it was observed that bagasse ash is an effective mineral admixture, with 5% as optimal replacement ratio of cement.


2020 ◽  
Vol 322 ◽  
pp. 01018
Author(s):  
Elżbieta Janowska-Renkas ◽  
Agnieszka Kaliciak

This paper presents test results of the physical and mechanical properties of geopolymers based on conventional fly ash activated at increased temperature with sodium hydroxide, containing glass powder obtained from the recycling of waste glass. Tests were performed on mortars of a geopolymer binder containing glass powder of various levels of fineness, at quantities ranging from 5 to 95% of the mass of the conventional fly ash. The properties of the geopolymer binder with and without the content of glass powder were determined on the basis of the heat of hydration. The suitability of the application of glass powder in geopolymers was confirmed by results of testing the following parameters using a scanning electron microscope (SEM) and analysis of micro areas (EDS) in geopolymer materials: particle size distribution, density, porosity, X-ray diffraction (XRD). Testing of the compressive strength of the geopolymer mortars was performed after: 1, 7, 14 and 28 days of curing in air-dry conditions. Results of microstructure tests confirm that the glass powder coming from recycled waste glass in presence of the geopolymer binder undergoes reactions of alkaline activation at increased temperature, the products of which are zeolite minerals and sodium silicate gel. On the basis of test results of physical and mechanical properties of the geopolymers, it was proven that the content of glass powder had a beneficial effect on the utility parameters of the obtained material. The aforementioned research confirms the possibility of using waste glass for the production of geopolymer materials applied in the construction industry.


2009 ◽  
Vol 620-622 ◽  
pp. 251-254
Author(s):  
Cheol Woo Park ◽  
Kyung Nam Kim

This study intends to increase the consumption of coal ash which is an industrial by-product from power plants. The coal ash used to be deposited in the ground and its recycling has been very poor comparing to the produced amount. This study aims to enhance practical application of coal ash as a shotcrete construction material. Derived were optimum mix proportions for high performance shotcrete using coal ash. In order to enhance long term performance, silica fume was also added. Experimental variables included replacement ratio of silica fume and coal ash. Compressive strength and potential hazardous contamination to soil were the primary factors in the performance evaluation. From the test results, when fly ash was replaced up to 10% of the cement, most required specifications were satisfied. Hazardous material content was shown to be well below the specifications. Therefore, when appropriate caution in handling is given in the field, it is strongly anticipated to increase the coal ash recycling as a shotcrete construction material.


J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 223-232
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.


2016 ◽  
Vol 866 ◽  
pp. 99-105 ◽  
Author(s):  
Smita Singh ◽  
M.U. Aswath ◽  
R.V. Ranganath

The present investigation is on the effect of red mud on the mechanical properties and durability of the geopolymer paste in sulphuric and acetic acid solution. Red mud and fly ash were used to form the geopolymer paste along with the alkalies. The variation of red mud in the paste composition was from 0% to 90%. Cylindrical shaped specimens of 1 inch diameter and 1 inch height were prepared. The specimens were immersed in 5% sulphuric acid and 5% acetic acid for 1, 7, 14, 28, 56 and 84 days and tested for weight loss, visual deformation, strength loss and colour of the solvent, based on the procedure specified by ASTM C 267 – 01. SEM/EDX Tests were performed on the geopolymer specimens. Test results show that initially, the strength of the geopolymer increased upon the addition of red mud. The strength was maximum when the percentage of red mud was 30%. The maximum strength obtained was 38 MPa for the paste containing 30% red mud using 10M alkali solution as against 31.69 MPa, when only fly ash was used. Geopolymer paste containing 30% and 50% red mud showed better resistance to acid attack. The strength loss was minimum for the samples containing 30% red mud in both inorganic and organic acid i.e. sulphuric and acetic acid.


Sign in / Sign up

Export Citation Format

Share Document