scholarly journals Modeling heat transfer process in soils

2018 ◽  
Vol 251 ◽  
pp. 02048 ◽  
Author(s):  
Ian Ofrikhter ◽  
Alexander Zaharov ◽  
Andrey Ponomaryov ◽  
Natalia Likhacheva

In this paper, a new model is presented for calculating the thermal conductivity of soils, and the main provisions for the derivation of analytical formulas are given. The presented model allows taking into account the density, moisture content and temperature of the soil base. The technique presented in the paper makes it possible to dispense with laborious experiments to estimate the thermal conductivity of the soil. The method of analytical calculation is step by step presented in the paper. Two variants of using the method are proposed: 1) Less accurate method, for preliminary evaluation, without the need to take probe and conduct experiments. 2) More accurate method, with at least one experiment with a disturbed or undisturbed sample. The results of comparison of calculated values of thermal conductivity and experimental data are presented.

Author(s):  
Jurij Avsec ◽  
Maks Oblak

The paper features the mathematical model representing the analytical calculation of thermal conductivity for nanofluids. The mathematical model was developed on the basis of statistical nano-mechanics. We have made the detailed analysis of the influence of temperature dependence on thermal conductivity for nanofluids. On this basis are taken into account the influences such as formation of nanolayer around nanoparticles, the Brown motion of solid nanoparticles and influence of diffusive-ballistic heat transport. The analytical results obtained by statistical mechanics are compared with the experimental data and they show relatively good agreement.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2645-2655
Author(s):  
Yuehua Zhu ◽  
Yaoli Zhang ◽  
Biao Pan

The thermal conductivity and the deformation of wood from the Taxodium hybrid ‘Zhongshanshan’ were studied in the process of heat transfer. The results showed that the average thermal conductivity of this wood was 0.1257 W/(m·K) under the condition of 12% wood moisture content and 30 °C heat transfer temperature. When the testing temperature exceeded 0 °C, the thermal conductivity increased linearly with both temperature and wood moisture content and was affected by the moisture content of the wood. During the heat transfer process, the deformation of features caused repeated swelling and shrinkage in the longitudinal, radial, and tangential directions. The dimensional change was greatly affected by the wood’s moisture content and was less affected by the temperature. These results are of great meaning for the study of the heat transfer process of Taxodium hybrid ‘Zhongshanshan’ wood. Furthermore, it provides a scientific basis for the heat preservation effect, drying treatment, and pyrolysis treatment of Taxodium hybrid ‘Zhongshanshan’ wood for use as a building material.


Author(s):  
Aditya Kuchibhotla ◽  
Debjyoti Banerjee

Stable homogeneous colloidal suspensions of nanoparticles in a liquid solvents are termed as nanofluids. In this review the results for the forced convection heat transfer of nanofluids are gleaned from the literature reports. This study attempts to evaluate the experimental data in the literature for the efficacy of employing nanofluids as heat transfer fluids (HTF) and for Thermal Energy Storage (TES). The efficacy of nanofluids for improving the performance of compact heat exchangers were also explored. In addition to thermal conductivity and specific heat capacity the rheological behavior of nanofluids also play a significant role for various applications. The material properties of nanofluids are highly sensitive to small variations in synthesis protocols. Hence the scope of this review encompassed various sub-topics including: synthesis protocols for nanofluids, materials characterization, thermo-physical properties (thermal conductivity, viscosity, specific heat capacity), pressure drop and heat transfer coefficients under forced convection conditions. The measured values of heat transfer coefficient of the nanofluids varies with testing configuration i.e. flow regime, boundary condition and geometry. Furthermore, a review of the reported results on the effects of particle concentration, size, temperature is presented in this study. A brief discussion on the pros and cons of various models in the literature is also performed — especially pertaining to the reports on the anomalous enhancement in heat transfer coefficient of nanofluids. Furthermore, the experimental data in the literature indicate that the enhancement observed in heat transfer coefficient is incongruous compared to the level of thermal conductivity enhancement obtained in these studies. Plausible explanations for this incongruous behavior is explored in this review. A brief discussion on the applicability of conventional single phase convection correlations based on Newtonian rheological models for predicting the heat transfer characteristics of the nanofluids is also explored in this review (especially considering that nanofluids often display non-Newtonian rheology). Validity of various correlations reported in the literature that were developed from experiments, is also explored in this review. These comparisons were performed as a function of various parameters, such as, for the same mass flow rate, Reynolds number, mass averaged velocity and pumping power.


2015 ◽  
Vol 55 (4) ◽  
pp. 267 ◽  
Author(s):  
Jan Skočilas ◽  
Ievgen Palaziuk

<p>This paper deals with a computational fluid dynamics (CFD) simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST) <em>k-!</em> model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.</p>


Author(s):  
P. E. Phelan ◽  
J. R. Pacheco

In this paper, a numerical scheme based on the immersed boundary method is used to study the motion of nano-sized particles subjected to Brownian motion and heat transfer. Our objective is to use this numerical technique as a tool to better understand the effect that Brownian forces have on the overall heat transfer process. The conventional approach to perform Brownian dynamic simulations is based on the use of a random force in the particle motion such that the fluctuation-dissipation theorem is satisfied. Our preliminary computational results suggest an increase in the thermal conductivity of the bulk fluid. Results are presented for several particles in a two-dimensional space.


1986 ◽  
Vol 10 (3) ◽  
pp. 141-152
Author(s):  
H.M. Badr ◽  
S.M. Ahmed

The aim of this work is a theoretical investigation to the problem of heat transfer from an isothermal horizontal cylinder rotating in a quiescent fluid. The study is based on the solution of the conservation equations of mass, momentum and energy for two-dimensional flow of a Boussinesq fluid. The effects of the parameters which influence the heat transfer process namely the Reynolds number and Grashof number are considered while the Prandtl number is held constant. Streamline and isotherm patterns are obtained from the mathematical model and the results are compared with previous experimental data. A satisfactory agreement was found.


Author(s):  
Sezer O¨zerinc¸ ◽  
Almıla G. Yazıcıog˘lu ◽  
Sadık Kakac¸

A nanofluid is defined as the suspension of nanoparticles in a base liquid. Studies in the last decade have shown that significant amount of thermal conductivity and heat transfer enhancement can be obtained by using nanofluids. In the first part of this study, classical forced convection heat transfer correlations developed for pure fluids are used to predict the experimental values of heat transfer enhancement of nanofluids. It is seen that the experimental values of heat transfer enhancement exceed the enhancement predictions of the classical correlations. On the other hand, a recent correlation based on the thermal dispersion phenomenon created by the random motion of nanoparticles predicts the experimental data well. In the second part of the study, in order to further examine the validity of the thermal dispersion approach, a numerical analysis of forced convection heat transfer of Al2O3/water nanofluid inside a circular tube in the laminar flow regime is performed by utilizing single phase assumption. A thermal dispersion model is applied to the problem and variation of thermal conductivity with temperature and variation of thermal dispersion with local axial velocity are taken into account. The agreement of the numerical results with experimental data might be considered as an indication of the validity of the approach.


Author(s):  
Ganesha Antarnusa ◽  
Yus Rama Denny ◽  
Andri Suherman ◽  
Indri Sari Utami ◽  
Asep Saefullah

Background & Objective: Magnetic nanofluid is a special class of nanofluid that exhibits both magnetic and fluid properties. The main purpose of using magnetic nanofluid as a heat transfer medium comes from the possibility of controlling the flow and the heat transfer process through an external magnetic field. This research aims at identifying the effect of adding polyethylene glycol (PEG) to magnetite (Fe3O4) nanoparticles for magnetic nanofluid applications. Method: The nanofluid were prepared by synthesizing Fe3O4 nanoparticles using the chemical precipitation method, and then dispersed in distilled water using a sonicator. Results: The result of XRD is that nanoparticles had inverse spinel structures and the smallest crystallite size is found in the Fe3O4@PEG-6000 samples. FE-SEM and TEM show that the addition of PEG can reduce the Fe3O4 agglomeration and the smallest particle size is found in the Fe3O4@PEG-6000 samples. The result of FT-IR shows that there is a surface modification of Fe3O4 nanoparticles and PEG polymer. The result of VSM shows the coercivity value is small so that the sample is superparamagnetic material. The addition of PEG increases the thermal conductivity of Fe3O4 nanoparticles. Conclusion: The addition of PEG makes particle size smaller, reduce the agglomeration and increases the thermal conductivity, so that it is potential for magnetic nanofluid applications.


2012 ◽  
Vol 188 ◽  
pp. 314-317
Author(s):  
Florin Ştefănescu ◽  
Gigel Neagu ◽  
Alexandrina Mihai ◽  
Iuliana Stan

Abstract. The paper presents some theoretical and experimental data regarding the directional solidification, revealing the main factors (especially those which are related to the heat transfer process) which have influence on the crystals size and morphology. The crystalline structure of alloys is determined by three important factors: chemical composition, thermal conditions, and characteristics of germination and growth from liquid of solid nuclei. The solidification structure can be influenced by acting on the mould properties or directly on the cast material, both of these actions being based upon the change of temperature distribution in the alloy-mould system. Experimental data demonstrated the major influence of the thermal regime on the crystallization-solidification process, on the transcrystallization zone and they pointed out the limits to direct the crystals formation (size and shape) by changing the cooling regime.


Sign in / Sign up

Export Citation Format

Share Document