scholarly journals Design and Manufacturing Process of Micro Air Vehicles

2019 ◽  
Vol 257 ◽  
pp. 01003
Author(s):  
Mateusz Rakiec ◽  
Aleksandra Kwiecien ◽  
Rafal Muchowski ◽  
Bartosz Kazmierski

This paper shows shortly the designing, optimization and manufacturing process of light and compact, carbon fiber MAV. It also covers testing and results. The main purpose was to make an innovative prototype of UAV which is easy to transport, assembly and carry as much high volume payload as possible. The optimization process started from defining the constrains. To gain information needed to choose the best solution and perform optimization, authors made many tests. The material, which was chosen, had to be as light and durable as possible - this characteristics were later checked in tensile test of carbon fiber samples. The main optimization algorithm do initial research about the rest parameters of aircraft. The point was to narrow the range of analyzed chord’s values and find the best motors. For better performance the original airfoil was developed. It works perfectly in low Reynolds number area and has perfect characteristics for high-lift airfoils, compared to similar. It was later checked in CFD. The special manufacturing process of carbon fiber airplane was designed. After all the construction was tested. The successful flight tests confirmed that design process was appropriate and done well. All theoretical assumptions were also right.

2018 ◽  
Author(s):  
Pablo M. N. Araujo ◽  
Thiago R. Costa ◽  
Eduardo C. Silva

Author(s):  
Johannes Ruhland ◽  
Christian Breitsamter

AbstractThis study presents two-dimensional aerodynamic investigations of various high-lift configuration settings concerning the deflection angles of droop nose, spoiler and flap in the context of enhancing the high-lift performance by dynamic flap movement. The investigations highlight the impact of a periodically oscillating trailing edge flap on lift, drag and flow separation of the high-lift configuration by numerical simulations. The computations are conducted with regard to the variation of the parameters reduced frequency and the position of the rotational axis. The numerical flow simulations are conducted on a block-structured grid using Reynolds Averaged Navier Stokes simulations employing the shear stress transport $$k-\omega $$ k - ω turbulence model. The feature Dynamic Mesh Motion implements the motion of the oscillating flap. Regarding low-speed wind tunnel testing for a Reynolds number of $$0.5 \times 10^{6}$$ 0.5 × 10 6 the flap movement around a dropped hinge point, which is located outside the flap, offers benefits with regard to additional lift and delayed flow separation at the flap compared to a flap movement around a hinge point, which is located at 15 % of the flap chord length. Flow separation can be suppressed beyond the maximum static flap deflection angle. By means of an oscillating flap around the dropped hinge point, it is possible to reattach a separated flow at the flap and to keep it attached further on. For a Reynolds number of $$20 \times 10^6$$ 20 × 10 6 , reflecting full scale flight conditions, additional lift is generated for both rotational axis positions.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 195
Author(s):  
George Sofiadis ◽  
Ioannis Sarris

Fluid microstructure nature has a direct effect on turbulence enhancement or attenuation. Certain classes of fluids, such as polymers, tend to reduce turbulence intensity, while others, like dense suspensions, present the opposite results. In this article, we take into consideration the micropolar class of fluids and investigate turbulence intensity modulation for three different Reynolds numbers, as well as different volume fractions of the micropolar density, in a turbulent channel flow. Our findings support that, for low micropolar volume fractions, turbulence presents a monotonic enhancement as the Reynolds number increases. However, on the other hand, for sufficiently high volume fractions, turbulence intensity drops, along with Reynolds number increment. This result is considered to be due to the effect of the micropolar force term on the flow, suppressing near-wall turbulence and enforcing turbulence activity to move further away from the wall. This is the first time that such an observation is made for the class of micropolar fluid flows, and can further assist our understanding of physical phenomena in the more general non-Newtonian flow regime.


2017 ◽  
Vol 52 (3) ◽  
pp. 395-404
Author(s):  
Xiuqi Lyu ◽  
Jun Takahashi ◽  
Yi Wan ◽  
Isamu Ohsawa

Chopped carbon fiber tape-reinforced thermoplastic material is specifically developed for the high-volume production of lightweight automobiles. With excellent design processability and flexibility, the carbon fiber tape-reinforced thermoplastic material is manufactured by compressing large amounts of randomly oriented, pre-impregnated unidirectional tapes in a plane. Therefore, the carbon fiber tape-reinforced thermoplastic material presents transversely isotropic properties. Transverse shear effect along the thickness direction of carbon fiber tape-reinforced thermoplastic beam has a distinct influence on its flexural deformation. Accordingly, the Timoshenko beam theory combined with vibration frequencies was proposed to determine the set of transverse flexural and shear moduli. Meanwhile, the transverse flexural and shear moduli of carbon fiber tape-reinforced thermoplastic beam were finally determined by fitting all the first seven measured and calculated eigenfrequencies with the least squares criterion. In addition, the suggested thickness to length ratio for the 3-point bending test and Euler–Bernoulli model was given.


2021 ◽  
Author(s):  
Douglas L. Van Bossuyt ◽  
Ryan M. Arlitt

Abstract We introduce a method to help protect against and mitigate possible consequences of major regional and global events that can disrupt a system design and manufacturing process. The method is intended to be used during the conceptual phase of system design when functional models have been developed and component solutions are being chosen. Disruptive events such as plane crashes killing many engineers from one company traveling together, disease outbreaks killing or temporarily disabling many people associated with one industrial sector who travel to the same conference regularly, geopolitical events that impose tariffs or complete cessation of trade with a country that supplies a critical component, and many other similar physical and virtual events can significantly delay or disrupt a system design process. By comparing alternative embodiment, component, and low-level functional solutions, solutions can be identified that better pass the bus factor where no one disruptive event will cause a major delay or disruption to a system design and manufacturing process. We present a simplified case study of a renewable energy generation and storage system intended for residential use to demonstrate the method. While some challenges to immediate adoption by practitioners exist, we believe the method has the potential to significantly improve system design processes so that systems are designed, manufactured, and delivered on schedule and on budget from the perspective of significant disruptive events to design and manufacturing.


2000 ◽  
Author(s):  
Ajit Pal Singh ◽  
S. H. Winoto ◽  
D. A. Shah ◽  
K. G. Lim ◽  
Robert E. K. Goh

Abstract Performance characteristics of some low Reynolds number airfoils for the use in micro air vehicles (MAVs) are computationally studied using XFOIL at a Reynolds number of 80,000. XFOIL, which is based on linear-vorticity stream function panel method coupled with a viscous integral formulation, is used for the analysis. In the first part of the study, results obtained from the XFOIL have been compared with available experimental data at low Reynolds numbers. XFOIL is then used to study relative aerodynamic performance of nine different airfoils. The computational analysis has shown that the S1223 airfoil has a relatively better performance than other airfoils considered for the analysis.


2010 ◽  
Vol 114 (1158) ◽  
pp. 485-492 ◽  
Author(s):  
A. Watkins ◽  
M. Thompson ◽  
M. Shortis ◽  
R. Segal ◽  
M. Abdulrahim ◽  
...  

Abstract Aspects of the turbulent wind environment Micro Air Vehicles (MAVs) experience when flying outdoors were replicated in a large wind tunnel. An overview of the facility, instrumentation and initial flight tests is given. Piloting inputs and aircraft accelerations were recorded on fixed and rotary wing MAVs and for some tests, measurements of the approach flow (u,v,w sampled at 1,250Hz at four laterally disposed upstream locations) were made. The piloting aim was to hold straight and level flight in the 12m wide × 4m high × ~50m long test section, while flying in a range of turbulent conditions. The Cooper-Harper rating system showed that a rotary craft was less sensitive to the effects of turbulence compared to the fixed wing craft and that while the fixed wing aircraft was relatively easy to fly in smooth air, it became extremely difficult to fly under high turbulence conditions. The rotary craft, while more difficult to fly per. se., did not become significantly harder to fly in relatively high turbulence levels. However the rotary craft had a higher mass and MOI than the fixed wing craft and further work is planned to understand the effects of these differences.


Sign in / Sign up

Export Citation Format

Share Document