scholarly journals PP-CBW/m-LLDPE/micro-CaCO3 composite films manufactured from bumper waste by blown film extrusion

2019 ◽  
Vol 281 ◽  
pp. 03001 ◽  
Author(s):  
Nancy Zgheib ◽  
Sylvain Seif ◽  
Nemr El Hajj

The synthesis of polypropylene-based car bumper waste (PP-CBW)/metallocene linear low-density polyethylene (m-LLDPE)/micro-CaCO3 composite films for agriculture mulch films applications has been thoroughly investigated during this study. The chemical composition of these wastes was determined by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Three blends of various compositions were prepared using a twin-screw extruder, the pellets were then blown into films using a single screw extruder. The mechanical properties of the films were then studied and compared with the EN 13655, 2002 standards for agriculture mulch films applications. The results indicated that the use of an anhydride grafted polypropylene (MAH-g-PP) as compatibilizer improves the adherence at the interface between the polar acrylic paints present in the car bumper waste and the polymer matrix. Also, the presence of stearic acid surface treated micro-CaCO3 improves considerably the mechanical properties of the composite when the amount of PP-CBW is less than 13 wt%. Using higher amount of PP-CBW improves the tear resistance properties in TD and MD but fails to increase the impact strength and the tensile properties in MD and TD.

2005 ◽  
Vol 13 (4) ◽  
pp. 385-394
Author(s):  
Huiyu Bai ◽  
Yong Zhang ◽  
Yinxi Zhang ◽  
Xiangfu Zhang ◽  
Wen Zhou

New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with commercial poly(ethylene-co-octene) copolymer (POE), varying the POE content up to 10 wt%, in a twin screw extruder, followed by injection moulding. The influence of POE on the properties of the PBT/PC blends was investigated in terms of mechanical testing, dynamic mechanical thermal (DMTA) analysis, differential scanning calorimetry (DSC), and scanning electronic microscopy (SEM). The results showed that addition of POE led to remarkable increases in the impact strength, elongation at break and Vicat temperature, and a reduction in the tensile strength and flexural properties of PBT/PC blends. The morphology of the blends was observed using SEM and the average diameter of the dispersed phase was determined by image analysis. The critical inter-particle distance for PBT/PC was determined.


2011 ◽  
Vol 366 ◽  
pp. 310-313
Author(s):  
Ming Tao Run ◽  
Meng Yao ◽  
Bing Tao Xing ◽  
Wen Zhou

The rheology, morphology and mechanical properties of the PA6/PP-g-MAH/POE blends prepared by twin-screw extruder were studied by rheometer, scanning electron microscopy, universal tester and impact tester, respectively. The results suggest that the impact strength is improved by the POE acting as a toughening agent, while the compatibility of PA6 and POE is improved by the compatibilizer of PP-g-MAH. Furthermore, the PP-g-MAH component also acts as a reinforcing agent for decreasing the strength depression induced by the POE component. When POE content is about 9 wt% and PP-g-MAH content is about 10% in blends, the blend has the maximum tensile strength and impact strength. All melts of PA6/PP-g-MAH/POE blends are pseudo-plastic fluids. Both the POE and PP-g-MAH components can increase the apparent viscosity of the melt due to their facility of the linear molecular.


2020 ◽  
Vol 856 ◽  
pp. 331-338
Author(s):  
Sirisart Ouajai ◽  
Suttinun Phongtamrug

This research has focused on the effect of modified cellulose and clay on the thermal and mechanical properties of PLA bio-nanocomposite. Cellulose was chemically modified with silane coupling agent in order to enhance compatiblization with PLA. Successful modification was confirmed by Fourier Transform Infrared Spectroscopy and EDX-SEM. PLA was compounded with various amounts and ratios of the modified cellulose and clay by a twin-screw extruder. Thermal properties of the bio-nanocomposites were characterized by Thermogravimetric Analysis and Differential Scanning Calorimetry. Glass transition temperature of the bio-nanocomposite slightly decreased whereas melting temperature remained constant when the amount of both fillers was increased. In addition, crystallization behaviour of PLA has been influenced by the type and amount of the fillers. Clay showed a greater effect on the crystallization of PLA than the modified cellulose and unmodified one, respectively. The flexural modulus of the composite containing equal amount between clay and cellulose was increased with an increasing in fillers contents. But the flexural and impact strength of composite were gradually decreased with an increase in fillers contents. Variation of clay and cellulose ratio resulted in the change of mechanical properties. The composite containing higher ratio between clay:cellulose or cellulose:clay showed a better mechnical properties comparing to the ratio of clay:cellulose equal to 1:1.


2011 ◽  
Vol 221 ◽  
pp. 27-31 ◽  
Author(s):  
Rong Xian Ou ◽  
Qing Wen Wang ◽  
Fei Pin Yuan ◽  
Bao Yu Liu ◽  
Wei Jun Yang

Hydrolyzed Kevlar fibers (KFs) were compouded into high-density polyethylene (HDPE) with wood flour (WF) by twin-screw/single-screw extruder to investigate the reinforcement effects of KFs on the mechanical properties of conventional WF/HDPE composites. Maleated HDPE (MAPE) was used as a compatibilizer. The mechanical properties significantly improved as the KFs loading increases in the presence of 4% MAPE, such as tensile strength 14.7%, tensile modulus 12.4%, flexural strength 22.2%, flexural modulus 22.4%, and impact strength 41.7% with 2 wt.% KFs compared to WF/HDPE composite with MAPE. The fiber matrix morphology of the interface region in the composites was examined using scanning electron microscopy (SEM).


2014 ◽  
Vol 1025-1026 ◽  
pp. 241-245 ◽  
Author(s):  
Ľudmila Dulebová ◽  
Emil Spišák ◽  
Branislav Duleba ◽  
František Greškovič ◽  
Tomasz Garbacz

The paper presents the impact of the use of fillers on the mechanical properties of composites with polymeric matrix from polypropylene (PP). Two main types of mineral fillers - talc and calcium carbonate - were used for experiments. PP composites of different percentage filler in matrix PP were compounded with twin-screw extruder and then injection molding. Properties of composites were investigated by tensile test and thermal analysis. Tensile strength was performed to determine and compare the mechanical properties of the unfilled PP and filled PP with various percentages of fillers. Thermal analysis by thermogravimetric was performed on the tested materials - weight loss, glass transition temperature, thermal decomposition, melting temperature.


2014 ◽  
Vol 1033-1034 ◽  
pp. 869-872
Author(s):  
Kun Yan Wang

Polypropylene (PP)/ethylene-vinyl acetate (EVA) blends were prepared using a twin-screw extruder by melt blending method. The influences of the EVA contents in PP/EVA blends on crystallization behavior and mechanical properties were investigated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). XRD results show that the EVA not change the crystal structure in the blends but only decrease the intensity of the diffraction peak. DSC results showed that the melting point and crystallization point decreased when EVA added to the blend. The tensile properties of PP/EVA blend become much better.


2014 ◽  
Vol 554 ◽  
pp. 62-65 ◽  
Author(s):  
Noora Tiqah Mohamad Fauzi ◽  
Zurina Mohamad

The objective of this study is to investigate the effect of sepiolite concentration (2-10 phr) on the mechanical properties of polyamide 6 (PA6) / ethylene vinyl acetate (EVA) blend at the ratio 80/20. Twin screw extruder and injection moulding machine were used to prepare the samples. The strength and modulus of flexural was increased until 6 phr of sepiolite content. On the other hand, the impact strength of PA6/EVA/sepiolite composite was decreased gradually as sepiolite content increased.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1971 ◽  
Author(s):  
Suwei Wang ◽  
Ping Xue ◽  
Mingyin Jia ◽  
Jing Tian ◽  
Run Zhang

The polypropylene (PP)/wood flour (WF) composites were prepared using a co-rotating twin-screw extruder followed by a single-screw extruder foaming system in this paper. Polymers, such as polyolefin elastomer (POE), high-density polyethylene (HDPE) or microcrystalline wax, were blended with PP in the preparation of composites to improve the melt strength. And a cavity transfer mixer was introduced to increase the distribution uniformity of components in composites. Meanwhile, the effect of the polymer blends on the microstructure and mechanical properties of samples was investigated. The experimental results show that the addition of POE and HDPE resulted in the second melting peak in the differential scanning calorimeter (DSC) curves and a great decrease in the cell size was caused by the added POE. However, due to the velocity difference of composites in the die, the shape of bubbles gradually became irregular. Moreover, the impact strength of samples significantly increased by 85% for the added POE and the apparent density decreased by 6.7%. And the minimum Vicat softening temperature of 133.7 °C was obtained when the mass ratio of HDPE to PP was 4/6.


2018 ◽  
Vol 171 ◽  
pp. 03001 ◽  
Author(s):  
Nancy Zgheib ◽  
Doumit Tahan ◽  
Sylvain Seif ◽  
Nemr El Hajj

Extrusion blown films from Polyamide waste/metallocene linear low-density polyethylene (PAW/mLLDPE) blend based matrix system and calcium carbonates particles were successfully produced and characterized. Also, the effect of the extruder temperature used during twin-screw compounding, the coupling agent loading and PA loading on the mechanical properties of the obtained films were studied. The key aspect of the present study was in investigating the optimal combination of factors by using Design of Experiment (DOE) approach. The responses measured were the tensile strength in the machine direction (MD) and the tensile strength in the transverse direction (TD). Among the selected processing parameters, the coupling agent and the interaction between the coupling agent and the PA loading have the most important influence on the tensile strength.


2011 ◽  
Vol 194-196 ◽  
pp. 2347-2350 ◽  
Author(s):  
Zi Nian Zhao ◽  
Xin Xin Nie ◽  
Rui Wang

By means of melt blending process in a co-rotating twin screw extruder with two-step process, the low density polyethylene (LDPE)/ethylene octene copolymer (POE)/zeolite molecular sieves (ZMS) composites were prepared. The influence of ZMS on the crystallinity, mechanical properties and permeability was investigated by differential scanning calorimetry(DSC), universal testing machine and permeability tester, respectively. The results showed that the addition of ZMS made the crystallinity of composite film decreased and the growth rate of crystal nucleus promoted. As the content of ZMS rose, the mechanical properties of composite film decreased, while the CO2, O2permeability and the moisture permeability increased.


Sign in / Sign up

Export Citation Format

Share Document