scholarly journals TITANIUM SHEET HOT FORMING IN THE AEROSPACE INDUSTRY

2020 ◽  
Vol 321 ◽  
pp. 04020
Author(s):  
Guillaume SANA

Technologies dedicated to hot forming of titanium sheet are key processes for the manufacturing of structural and engine parts in the aerospace industry. The evolution of these processes in the past years is strategical taking into account the on-going increase of production rate of commercial aircrafts as single aisle and long-range civil aircrafts. Starting from the use of single superplastic forming press, the state-of-the art has evolved to the use of automated forming cells from one side and to the development of the Hot Forming process on the other side. These evolutions are pushed by the aerospace market and its needs of a strong and efficient supply chain. In order to assure production rate, cost saving and part quality to our customer, Aries Alliance offers tailor made solutions adapted to each customer need. From the delivery of fully-automated smart press cell to serial part production Aries Alliance is able to provide smart answer to the challenges brought by end-users. One of the roles of this niche industry is also to promote titanium applications challenged by the market facing strong competition from lightweight alloys like Al‑Li or composite materials especially for aerostructure applications.

2020 ◽  
Vol 321 ◽  
pp. 04026
Author(s):  
Mohamed ACHOURI

The use of titanium in the aerospace industry has grown considerably in recent years in conjunction with the development of composite aircraft. In this way, improving titanium forming has become an important issue for the industry, both for productivity objectives and the ability to deliver basic parts according to the needs imposed by aircraft delivery rates, as well as for cost objectives. Currently, hot forming of titanium parts can be achieved through two processes: Super-plastic forming (SPF) or Hot Forming (HF). The aeronautical industry wanted to develop an innovative process for the manufacture of titanium parts by coupling the HF and SPF processes in order to exploit the advantages of these two technologies. The development of a mixed HF / SPF process will thus not only improve the rates and allow better control of the quality of the formed parts (thickness homogeneity), but also, by allowing forming at lower temperatures, this hybrid process presents a large interest at the energy plan. The study was devoted to the development of a hybrid HF/SPF process, carried out at a common temperature, allowing the “pre-forming” of the part in HF mode and the “calibration” of the part in SPF mode, while respecting a global cycle time compatible with the objectives of the aerospace industry and guaranteeing the quality expected for the final complex part. Improving the performance of the final part requires a development of numerical simulation tool of the forming process. The available simulation tool (ABAQUS/ Standard) must be adapted to define the best simulation strategy according to the simulated parts; moreover, it remains imperative to determine the input data (material behavior laws of titanium alloys) adapted to the cases to be treated (strain rate and process temperature).


2012 ◽  
Vol 735 ◽  
pp. 338-346 ◽  
Author(s):  
Larry D. Hefti

Titanium is difficult to fabricate into complex aircraft configurations. There is several elevated temperature forming techniques that are available to produce titanium components for aircraft, two of which will be discussed here: Superplastic Forming (SPF) and hot forming. SPF is used when complex shapes are required, for example, tight radii, and uses a tool that contains the required configuration and seals around the periphery so inert gas pressure can be used to form the material. Since SPF is a process where the material is stretched, the part is not a uniform thickness when completed. A variation of the process combines SPF with diffusion bonding (SPF/DB) of two or more pieces of titanium together to produce integrally stiffened structure containing very few fasteners. The hot forming process uses matched metal tools, offset by the thickness of the starting material, are used to form the part contour at elevated temperature. The required part geometry usually contains no sharp features that have to be formed. Since the material is free to move as the die is closed, the part is fairly uniform in thickness when completed.


2016 ◽  
Vol 838-839 ◽  
pp. 563-567
Author(s):  
Guillaume Sana ◽  
Alain Petiot ◽  
Arnaud Giraudet

ACB (France) and its sister company Cyril Bath (USA) have a long experience in the fields of hydraulic presses and metal forming for the aerospace industry. This experience is particularly focused on the manufacturing of structural and engines parts. The purpose of this presentation is to show how the combination of both activities in the fields of Hot Forming/Sizing and Superplastic Forming results in continual progress and how recent evolution open new fields of applications. First, both processes will be shortly introduced. The advantages of Hot Forming, Superplastic forming and Diffusion Bonding technologies will be demonstrated regarding current customer’s requirements. To conclude an overview of on-going research programs will be made to present strong advantages of dual presses combining Hot Forming and Superplastic processes.


2012 ◽  
Vol 735 ◽  
pp. 301-306 ◽  
Author(s):  
Hai Jian Liang ◽  
Xiao Wei Wu ◽  
Yong Wang ◽  
Quan Lin Jin ◽  
Zhao Li Ma ◽  
...  

This article describes the high rate superplastic forming. The high rate superplastic forming technology is a new complex process,which integrates hot stamping and superplastic forming .It has feature of rapidity of the hot stamping and character of excellent formability of the superplastic forming.We obtained the best proportion of the hot forming and the superplastic forming through simulation experiment, and formed a car’s abonnet by applying the proportion.Compared with the high rate superplastic forming,the forming quality is better than that of hot forming. and the forming time is less than that of superplastic forming. Result shows that ,the high rate superplastic forming technology can meet the requirements for mass production.


2003 ◽  
Vol 125 (2) ◽  
pp. 333-343 ◽  
Author(s):  
Daniel F. Walczyk ◽  
Jean F. Hosford ◽  
John M. Papazian

The application of composites in the aircraft industry has increased significantly over the past few decades. With traditional composite laminate shaping, each layer is made to conform to the mold surface by hand before subsequent layers are added. This is a very labor- and time-intensive process. There is a great deal of interest in developing an automated process for forming composite parts with compound curvatures. The proposed composite forming process utilizes a computer-controlled, reconfigurable discrete element mold to incrementally form a compound curvature part shape from a flat lay-up, thereby facilitating process automation. An elastomeric interpolating layer, called an interpolator, is placed on top of the hemispherical forming ends of the die elements to prevent dimpling of the composite lay-up. The process employs vacuum to pull a single diaphragm (top), composite, and interpolator into contact with the mold surface. Through an experimental investigation, this new composites forming process with “active” tooling has been successfully demonstrated. Heating of the composite is accomplished by uncontained, forced convection using a matrix of heated air jets mounted above the composite. However, low-powered conduction is shown to be the best heating method in terms of both composite heating time and minimization of through-thickness temperature. Using vacuum to conform both the composite and the interpolator to the mold, and choosing sufficiently stiff diaphragm and interpolator materials, undimpled and wrinkle-free composite parts have been formed in an incremental fashion.


2016 ◽  
Vol 693 ◽  
pp. 800-806
Author(s):  
You Dan Guo

In high-strength steel hot forming, under the heating and quenching interaction, the material is oxidized and de-carbonized in the surface layer, forming a gradual change microstructure composed of ferrite, ferrite and martensite mixture and full martensite layers from surface to interior. The experiment enunciation: Form the table to ferrite, ferrite and martensite hybrid organization, completely martensite gradual change microstructure,and make the strength and rigidity of material one by one in order lower from inside to surface, ductility one by one in order increment in 22MnB5 for hot forming;Changes depends on the hot forming process temperature and the control of reheating furnace gas content protection, when oxygen levels of 5% protective gas, can better prevent oxidation and decarburization;Boron segregation in the grain boundary, solid solution strengthening, is a major cause of strength increase in ;The gradual change microstructure in outer big elongation properties, make the structure of the peak force is relatively flat, to reduce the peak impact force of structure, keep the structure of high energy absorption capacity;With lower temperature, the material yield strength rise rapidly,when the temperature is 650 °C, the yield strength at 950 °C was more than 3 times as much.


1967 ◽  
Vol 71 (677) ◽  
pp. 344-348
Author(s):  
J. V. Connolly

During the past two years, there has been a sharp acceleration to the interest which industry has displayed in the subject of management education. This can be attributed to these factors: —(a) A more widespread realisation of the gap developing between the UK and a number of foreign economies, as manifested by diverging rates of the major economic indicators.(b) The attainment of top-management responsibilities by a younger generation of managers, many of whom had been given some earlier training and who were more conscious of its value than the incumbents of the job from earlier generations.(c) The publication of the Franks, Robbins and (in the aerospace industry) the Plowden reports.(d) The impact of the Industrial Training Boards making it manifest, in terms of serious levies, that training was an economic necessity and therefore must be investigated thoroughly.Notwithstanding the widespread awakening of interest, it is very belated and sets numerous problems. The problems are in two areas—scale and quality.


1996 ◽  
Vol 243-245 ◽  
pp. 735-738 ◽  
Author(s):  
Kai Feng Zhang ◽  
Z.R. Wang ◽  
Xiao Ming Lai ◽  
G.L. Kan

2021 ◽  
Vol 6 (4) ◽  
pp. 251-261
Author(s):  
Manh Tien Nguyen ◽  
Truong An Nguyen ◽  
Duc Hoan Tran ◽  
Van Thao Le

This work aims to optimize the process parameters for improving the wall thickness distribution of the sheet superplastic forming process of AA7075 alloy. The considered factors include forming pressure p (MPa), deformation temperature T (°C), and forming time t (minutes), while the responses are the thinning degree of the wall thickness ε (%) and the relative height of the product h*. First, a series of experiments are conducted in conjunction with response surface method (RSM) to render the relationship between inputs and outputs. Subsequently, an analysis of variance (ANOVA) is conducted to verify the response significance and parameter effects. Finally, a numerical optimization algorithm is used to determine the best forming conditions. The results indicate that the thinning degree of 13.121% is achieved at the forming pressure of 0.7 MPa, the deformation temperature of 500°C, and the forming time of 31 minutes.


Sign in / Sign up

Export Citation Format

Share Document