scholarly journals Effects of compaction on the erodibility of a residual soil of gneiss

2021 ◽  
Vol 337 ◽  
pp. 01013
Author(s):  
Marcelo Heidemann ◽  
P. Nierwinski Helena ◽  
Bruna Sell ◽  
Paulo Vinícius da Silva

This work aims to verify the effects of the natural structure of a residual soil on its erodibility and the potential, employing compaction, to restore the erosion resistance. It is a residual soil of gneiss that occurs in the state of Santa Catarina, Southern Brazil. Infrastructure earthworks expose this material to the action of water, which can develop severe erosive features. The erodibility evaluation was made using the MCT methodology based on infiltrability and modified loss of mass by immersion tests. These tests were conducted in undisturbed specimens at natural moisture content and in compacted specimens at optimum moisture content. Such tests were also carried out in specimens air-dried for 24, 48, and 96 hours. This soil is inherently erosive, but the natural macrostructure makes it even more susceptible to erosion. Even compaction under modified energy is not able to recover the erodibility resistance. Drying slightly reduces the soil’s erosive potential when compacted, regardless of the compaction energy, but clearly increases the erosive potential of undisturbed soil.

2020 ◽  
Vol 3 ◽  
pp. 12-25
Author(s):  
Olaoluwa Oluwaniyi ◽  
Imoleayo Fatoyinbo ◽  
Akinola Bello ◽  
Joshua Owoseni

Failure of highway pavement and collapse of building in basement complex of Nigeria is often related to the instability of the residual. This study evaluated the strength characteristics of gneiss-derived residual Soils as materials usable for road pavement structures. A total of eleven soil samples derived from granite gneiss were subjected to laboratory geotechnical analyses based on standard practices. The geotechnical analyses reveal the soils’ natural moisture content, specific gravity, grain sizes, consistency limits, shearing strengths, maximum dry density, and optimum moisture content. Based on AASHTO classification, the soil samples are classified as A-7-6, A-6, and A-7-5. The results of the laboratory analyses revealed that the natural moisture content and specific gravity ranged from 8.30 to 22.70% and 2.6 to 2.8 respectively. Particle size analysis reveals that the coarse contents of the soils ranged from 28.8% to 59.8% and amount of fines ranged from 40.2 to 71.2%. The liquid limit ranged from 31.3% to 68.3%, plastic limit ranged from 20% to 28.0%, plasticity index ranged from 4.8% to 38.90% and linear shrinkage ranged from 5.7 to 13.6%. The maximum dry density ranged from 1481 kg/m3 to 1921 kg/m3 and optimum moisture content ranged from 15.2% to 27.6%. Undrained triaxial shear strength (Cu) ranged from 43.0 Kpa to 250.3Kpa, angle of friction ranges from 11.7 to 29.30, and unconfined compressive strength ranged from 153 to 356.5Kpa. The results indicate that the residual soils are poor sub-grade and foundation materials due to their high amount of fines, linear shrinkage values, plasticity, and swelling potential, as well as low maximum dry density.


Author(s):  
Apanpa, A. Kazeem ◽  
Olayiwola, Hameed ◽  
Anjonrin, Ademola

In order to access the cause(s) of road failure and proffer preventive measures for the future reconstruction of the Awotan-Akufo road, southwestern Nigeria, the geotechnical engineering properties of the subgrade soil, asphalt pavement thicknesses, drainage and traffic load were evaluated. Soil samples were collected from test pits 1 m deep and at an interval of 50 m and subjected to geotechnical analyses in accordance to AASTHO specification. The grain size distribution revealed that 70% of the entire samples from Awotan-Lifeforte and Adaba failed sections along Akufo road contain amount of fines more than 35% passing through sieve No. 200. The Natural Moisture Content range from 5.73 - 20.21% (Awotan-Lifeforte section) and the entire samples from Adaba failed sections have high natural moisture content ranging from 16.20 - 23.20%. From Atterberg limit test, the Liquid limit of 12 - 56% (Awotan-Lifeforte section) and 26.00 - 40.00% (Adaba Section) were obtained. The Plastic Limit and Plasticity Index of the soils ranges from 8.43 to 49.10% and 1.01 to 7.0% (Awotan-Lifeforte section), and 23.10 - 35.50% and 1.50 - 7.10% (Adaba Section) respectively. Linear shrinkage varies from 0.80 to 9.60% and from 3.10 to 8.80% for Awotan-Lifeforte and Adaba sections, respectively. The Maximum Dry Density of the soils ranged from 1.625 - 1.835 mg/m3 at Optimum Moisture Content of 13.4 - 17.3% (Lifeforte-Awotan section), and MDD of 1.752 - 1.975mg/m3 at Optimum Moisture Content of 13.4-17.3% (Adaba section). The unsoaked California Bearing Ratio are 30.08, 70.14, 39.08%, and the soaked California Bearing Ratio values are 26.17, 11.41, 33.41% (Lifeforte-Awotan section) respectively. At Adaba section of the road, the unsoaked California Bearing Ratio is 3.46, 87.70, 70.14%, and soaked California Bearing Ratio values are 3.42, 32.56, 39.83%. The average asphalt pavement thicknesses around Awotan-Lifeforte section range from 0.60 - 1.10 inches, and that of Adaba section range from 0.57 to 1.46 inches. The study concluded that the road pavement subgrade is silty clay and the geotechnical properties rated below the specifications of the Federal Ministry of Works and Housing at some failed portions. Asphalt pavement thicknesses are grossly inadequate and far below NAPA 2007 recommendation. As such the road cannot withstand the heavily loaded trucks that ply it on regular basis. All aforementioned contributed to the untimely failure of the road.


2020 ◽  
Vol 1 (12) ◽  
pp. 36-39
Author(s):  
L. V. Iyashvili ◽  
Yu. A. Vinnichenko ◽  
A. V. Vinnichenko

The purpose of the study is a quantitative assessment of the yield of dentinal fluid on the surface of the treated dentin of the tooth when restoring its structure with a composite filling material. To achieve this goal, digital images of the coronal parts of the teeth having formed carious cavities were used; virtual models of hard tissues of teeth recreated using specialized computer programs; A computer program that provides the ability to accurately determine the area of the treated dentin tooth. The results made it possible to draw the following conclusions: with an increase in the depth of the carious cavity, the amount of dentin fluid that can stand out on its surface (1–2 mm from the tooth cavity) sharply increases; with an increase in the area of the formed carious cavity (more than 30 mm2), the risk of release of a critical mass of dentinal fluid (more than 0.4 mg), which can adversely affect the strength of the adhesive interaction between the composite material and the hard tissues of the tooth, increases significantly; the same dynamics is observed with increasing time, at which there is the possibility of free exit of dentinal fluid to the surface of the cavity prepared for filling (more than 45 seconds).


2021 ◽  
Vol 9 (1) ◽  
pp. 16-20
Author(s):  
Iyad Alkroosh ◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee

This paper investigates the influence of sand content on the mechanical behavior of a low plasticity clay that collected from south of Iraq (Sumer town). Samples have been prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the clay weight. Standard Proctor and unconfined compression tests have been carried out and the optimum moisture content, maximum dry density, and undrained shear strength have been determined. The results show a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reaches 1.90 g/cm3 corresponding to an optimum moisture content of 12%. In addition, this paper shows that the undrained shear strength is inversely proportional to the increase of the percentage of sand. The results of this work provide a useful addition to the literature regarding the behaviour or low plasticity clay-sand mixture.


Author(s):  
Jason Wright ◽  
S. Sonny Kim ◽  
Mi G. Chorzepa ◽  
Stephan A. Durham

In a geosynthetic-reinforced pavement system, the load-bearing capacity of subgrade soil is improved by the lateral distribution of vertical stresses at the reinforcing layer. Under small-scale triaxial testing, the tensile properties of the geosynthetic are difficult to measure. Therefore, it is desirable to conduct large-scale testing to accurately monitor the behavior of geosynthetic-reinforced pavement foundations when subjected to rolling-wheel loadings. This study investigates the behavior of geosynthetic-reinforced pavement foundation systems through large-scale rolling-wheel tests performed with problematic subgrade soils found in north Georgia. Sixteen large-scale specimens were constructed of which twelve were reinforced with geosynthetic. Subgrade soils were compacted either at their optimum moisture content or at a higher than optimum moisture content to produce different California Bearing Ratios during specimen preparation. Both an extruded biaxial geogrid and woven geotextile were placed at various locations to investigate the optimal placement locations for different subgrade conditions. Pressure sensors were installed near the bottom of the aggregate base layer and near the top of the subgrade layer to monitor the variations in vertical stress within the pavement system under rolling-wheel load. Further, light weight deflectometer measurements were collected post-test to determine the effect of the geosynthetic on pavement foundation stiffness. The vertical pressure at the bottom of the aggregate base and top of subgrade decreased on average approximately 15.3% and 18.8%, respectively. The results indicate which type of geosynthetic and placement location provides the greatest reduction of pressure for each of the given subgrade conditions.


2019 ◽  
Vol 19 ◽  
pp. 35-43
Author(s):  
Wentao Li ◽  
Douglas J. Wilson ◽  
Tam J. Larkin ◽  
Philippa M. Black

2013 ◽  
Vol 710 ◽  
pp. 348-351
Author(s):  
Zheng Rong Zhao ◽  
Lei Wang ◽  
Hong Xia Yang

Through compaction test discussed about the compaction characteristics of expansive soil by lime modified in middle of Shandong province. The results show that the optimum moisture content is lower when the expansive soil is cured by dry compaction method, and the maximum dry density is higher. Compaction curve appeared the phenomenon of two peaks when expansive soil is cured by wet compaction method.Lime content of lime improved expansive soil, particle size composition, age and compaction function have influence on compaction curve.With the increase of the quantity of lime, the optimum moisture content increases, the maximum dry density decreases. With the age growth, the optimum moisture content increase slightly,the maximum dry density decreases slightly. The bigger the compaction work, the smaller moisture content is, the larger the maximum dry density is.


1978 ◽  
Vol 5 (4) ◽  
pp. 511 ◽  
Author(s):  
N Takahashi

The lengths of mesocotyls (first internodes) and coleoptiles of rice varied greatly with the moisture content of the seed-bed. The optimum moisture content in most Indica cultivars was much higher for coleoptile than for mesocotyl growth, but not in some Japonica cultivars because the mesocotyl growth was not vigorous and did not vary with water content. Under submerged conditions, coleoptile growth was markedly stimulated, particularly in Japonica cultivars but there was no mesocotyl elongation in either cultivar. The plastic variability in the growth of coleoptile, leaves, mesocotyl and other internodes may be an adaptive response of rice to the water tension of the soil. Endogenous ethylene formation and effects of ethylene and carbon dioxide were also studied.


Sign in / Sign up

Export Citation Format

Share Document