scholarly journals Determination of the rock mass resistance index (GSI) based on image processing

2021 ◽  
Vol 342 ◽  
pp. 02012
Author(s):  
Sorin Popescu ◽  
Ovidiu-Bogdan Tomuş

More and more often, and on an increasingly large scale, the geological resistance index (GSI) system is used for the design and practice of the mining process. The GSI, is a unique system for classifying the mass of rocks, linked to the parameters of rock strength and mass distortion, based on the generalized criteria of Hoek-Brown and MohrCoulomb. The GSI can be estimated using standard and in situ tables by direct surface observations in underground or surface mining. The GSI value provides a numerical representation of the overall Geotechnical quality of the rock mass. The method for determining GSI using photographic images of the in situ rock mass, with image processing technology, fractal theory and artificial neuronal network (ANN), is already known and successfully applied in several projects.

2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Author(s):  
Ismail Zaki, Et. al.

The characterization of rock massifs is a delicate job; indeed, it is possible to understand the behaviour of intact rocks individually by laboratory tests but it is difficult to characterize them on the whole rock mass, which has undergone a complex geological history. Empirical approaches play an important role in the excavation of galleries and the design of support systems. These approaches are considered very effective in optimizing the tunnel excavation process. Several reliable empirical approaches have been developed, but the selection or use of an appropriate empirical method to design the tunnel excavation remains a difficult task. Therefore, in this work, the analysis of four approaches, the most used, of different empirical design was carried out to determine the behaviour of the rock mass during its excavation in a state of high in situ stress. This study was carried out on the scale of the ST2 rock mass of the worksite (BAE well 3) at the Bouazzer mine. These approaches include the AFTES classification, rock mass index (RMR), rock mass quality (Q) and geological resistance index (GSI). Based on the simulated statistical results obtained from said empirical approaches, through the finite element calculation, it was found that the application of the rock mass quality approach is very efficient in the excavation of the rock mass. gallery of size because it makes it possible to take into account the equivalent dimensions of the gallery, the stress condition in situ due to the excavation and the heights of overburden which are considered as major elements of the stability of the gallery. The method provides an optimized reinforcement and support design. In addition, this study will serve as a valuable basic document for the geotechnical engineer to design and plan support systems in the excavation of galleries under high in-situ stress.


2020 ◽  
Vol 54 (1) ◽  
pp. qjegh2020-050
Author(s):  
Sihong Liu ◽  
Siyuan Xu ◽  
Bin Zhou

The permeability characteristics of rock mass discontinuities are important in the stability of hydropower station projects. We propose a large-scale in situ seepage testing method and use this method to test gently dipping bedding faults (C3 zone) and steep faults (F14) in a hydropower station construction field in China. The in situ test results are compared with those of both undisturbed and reconstituted specimens. The comparison indicates that the largest critical hydraulic gradient and the smallest seepage permeability coefficient are obtained via in situ tests because they are performed under stress states that simulate the natural stress of the surrounding rock mass. The natural stress of the surrounding rock mass cannot be reflected in tests of undisturbed and reconstituted specimens.


2018 ◽  
Vol 23 ◽  
pp. 42-47
Author(s):  
Krishna Kanta Panthi ◽  
Chhatra Bahadur Basnet

 The in-situ stress condition in the rock mass is influenced by both tectonic and geological environment, such as faulting and shearing in the rock mass. This influence is of considerable magnitude in the Himalayan region where the tectonic movement is active, resulting periodic dynamic earthquakes. Each large-scale earthquake causes both accumulation and sudden release of strain energy instigating changes in the in-situ stress environment in the rock mass. This paper evaluates the influence of local shear fault on the in-situ stress state along the shot crete lined high pressure tunnel of Upper Tamakoshi Hydroelectric Project, 456 MW in Nepal. A detailed assessment of the in-situ stress state is carried out by using both; measured data and three-dimensional numerical analysis using FLAC3D. The analysis includes evaluation on the possible changes in the in-situ stress state in the rock mass caused by seismic activities (dynamic loading). HYDRO Nepal JournalJournal of Water, Energy and Environment Issue: 23Year: 2018


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhanfeng Fan ◽  
Jianhua Cai

This paper proposes a large-scale experiment combined with multiple cement mortar blocks to simulate stress wave propagation across a jointed rock mass under unidirectional in situ stress. Two identical mortar block models with smooth, dry, and unfilled joints were poured. The stress waves in Model 1 and Model 2 were generated by an electric spark source and a blast-induced source, respectively. The effects of these two excitation sources on stress wave propagation were compared through crack propagation experiments. The experimental results show that the peak value of the transmitted strain wave decreases as the in situ stress increases. The unidirectional in situ stress has a certain inhibitory effect on the stress wave propagation. It also indicates that for Model 1 with the electric spark source, no cracks on the upper surface, but a Livingstone blasting crater at the bottom is generated. For Model 2 with the blast-induced source, cracks on the upper surface and a blasting crater at the bottom are produced. The results verify the similarity between the electric spark source and the explosive source. The two-dimensional finite element program (ANSYS/LS-DYNA) was applied to further simulate the crack propagation of a jointed rock mass under different in situ stresses. The results of numerical simulation verify that the in situ stress has a clear guiding effect on the crack propagation.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


2018 ◽  
Vol 23 (suppl_1) ◽  
pp. e16-e16
Author(s):  
Ahmed Moussa ◽  
Audrey Larone-Juneau ◽  
Laura Fazilleau ◽  
Marie-Eve Rochon ◽  
Justine Giroux ◽  
...  

Abstract BACKGROUND Transitions to new healthcare environments can negatively impact patient care and threaten patient safety. Immersive in situ simulation conducted in newly constructed single family room (SFR) Neonatal Intensive Care Units (NICUs) prior to occupancy, has been shown to be effective in testing new environments and identifying latent safety threats (LSTs). These simulations overlay human factors to identify LSTs as new and existing process and systems are implemented in the new environment OBJECTIVES We aimed to demonstrate that large-scale, immersive, in situ simulation prior to the transition to a new SFR NICU improves: 1) systems readiness, 2) staff preparedness, 3) patient safety, 4) staff comfort with simulation, and 5) staff attitude towards culture change. DESIGN/METHODS Multidisciplinary teams of neonatal healthcare providers (HCP) and parents of former NICU patients participated in large-scale, immersive in-situ simulations conducted in the new NICU prior to occupancy. One eighth of the NICU was outfitted with equipment and mannequins and staff performed in their native roles. Multidisciplinary debriefings, which included parents, were conducted immediately after simulations to identify LSTs. Through an iterative process issues were resolved and additional simulations conducted. Debriefings were documented and debriefing transcripts transcribed and LSTs classified using qualitative methods. To assess systems readiness and staff preparedness for transition into the new NICU, HCPs completed surveys prior to transition, post-simulation and post-transition. Systems readiness and staff preparedness were rated on a 5-point Likert scale. Average survey responses were analyzed using dependent samples t-tests and repeated measures ANOVAs. RESULTS One hundred eight HCPs and 24 parents participated in six half-day simulation sessions. A total of 75 LSTs were identified and were categorized into eight themes: 1) work organization, 2) orientation and parent wayfinding, 3) communication devices/systems, 4) nursing and resuscitation equipment, 5) ergonomics, 6) parent comfort; 7) work processes, and 8) interdepartmental interactions. Prior to the transition to the new NICU, 76% of the LSTs were resolved. Survey response rate was 31%, 16%, 7% for baseline, post-simulation and post-move surveys, respectively. System readiness at baseline was 1.3/5,. Post-simulation systems readiness was 3.5/5 (p = 0.0001) and post-transition was 3.9/5 (p = 0.02). Staff preparedness at baseline was 1.4/5. Staff preparedness post-simulation was 3.3/5 (p = 0.006) and post-transition was 3.9/5 (p = 0.03). CONCLUSION Large-scale, immersive in situ simulation is a feasible and effective methodology for identifying LSTs, improving systems readiness and staff preparedness in a new SFR NICU prior to occupancy. However, to optimize patient safety, identified LSTs must be mitigated prior to occupancy. Coordinating large-scale simulations is worth the time and cost investment necessary to optimize systems and ensure patient safety prior to transition to a new SFR NICU.


Sign in / Sign up

Export Citation Format

Share Document