scholarly journals Hardness behavior of W. Nr. 1.7709 steel, oil quenched and tempered between 475°C and 575°C

2021 ◽  
Vol 349 ◽  
pp. 02005
Author(s):  
John Mantzoukas ◽  
Dimitris G. Papageorgiou ◽  
Carmen Medrea ◽  
Constantinos Stergiou

Steel components frequently involve a heat treatment to improve mechanical properties. In order to meet difficult working conditions, several components are hardened by quenching. W. Nr. 1.7709 is a representative structural steel with very low thermal conductivity among EN wrought alloy steels, which is extensively used after hardening and tempering. Although the steelmakers provide technical information about their heat treatment sequence, the tempering diagram of the specific grade has not been designed yet. The present paper analyses the temper resistance of the specific steel after oil quenching and tempering at high temperatures. Samples of identical chemical compositions were accordingly prepared and randomized. Five groups of ten specimens were austenitized at 960°C, hold for 30 minutes and were quenched in oil. They were tempered for two hours at different temperatures between 475°C and 575°C. Specific temperatures are interesting to the heat treaters, as they could allow certain transformations which take place during tempering. Hardness measurements were carried out and statistically processed. The tempering diagram was plotted to the specified temperature range. The influence of tempering temperature on steel hardness was analysed and the resistance to tempering back of the steel was discussed. The tempering diagram is critical for metallurgists as it represents a guide to define the proper tempering parameters so that the hardness predicted according to the mechanical property requirements are obtained.

2018 ◽  
Vol 284 ◽  
pp. 351-356 ◽  
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim A. Ryzhkov

The high strength aerospace steel alloyed with Cr, Mn, Si, Ni, W and Mo was studied. The austenite transformations under continuous cooling conditions were investigated using the dilatometer analysis at the cooling rates 0.1...30 °C/s. The mechanical properties of the studied steel were determined after the conventional quenching and tempering heat treatment. The dependences of the mechanical properties on the tempering temperature were obtained. The novel quenching and partitioning heat treatment was applied to the steel under consideration. The microstructure and the mechanical properties were studied after three different modes of the quenching and partitioning (QP) treatment: single-stage QP, two-stage QP and single-stage QP with subsequent tempering (QPT).


2021 ◽  
Vol 410 ◽  
pp. 221-226
Author(s):  
Mikhail V. Maisuradze ◽  
Maxim A. Ryzhkov ◽  
Dmitriy I. Lebedev

The features of microstructure and mechanical properties of the aerospace high strength steel were studied after the implementation of various heat treatment modes: conventional oil quenching and tempering, quenching-partitioning, austempering. The dependence of the mechanical properties on the tempering temperature was determined. The basic patterns of the formation of mechanical properties during the implementation of isothermal heat treatment were considered. The optimal heat treatment conditions for the studied steel were established.


2012 ◽  
Vol 535-537 ◽  
pp. 231-234 ◽  
Author(s):  
Elena A. Prikhodko ◽  
Ivan A. Bataev ◽  
Anatoliy A. Bataev ◽  
Vasily S. Lozhkin ◽  
Vjacheslav I. Mali ◽  
...  

The structure of composites formed by explosive welding of thin sheets of tool and austenitic steels was studied by structural analysis methods. It is shown that the quenching and tempering of composites leads to the formation of complicated structure containing, along with layers of dissimilar steels, layers with new chemical compositions. Due to the structural changes there is an 2-fold increasing of impact toughness.


2013 ◽  
Vol 393 ◽  
pp. 126-129
Author(s):  
Bulan Abdullah ◽  
Siti Khadijah Alias ◽  
Ahmed Jaffar ◽  
Abdul Hakim Abdullah ◽  
Syazuan Abdul Latip ◽  
...  

The applications of ductile iron in numerous engineering applications require continuous effort in properties enhancement due to the necessity of product sustainability and performance. The studies highlighted the effect of 0.5 wt% titanium and niobium addition the mechanical properties of tempered ductile iron. The samples were prepared through conventional CO2 sand casting process. Heat treatment was conducted by austenitizing at 900°C for 1 hour and subsequently oil quenching before tempered at three different temperatures which are 500°C, 600°C and 700°C at 1 hour holding time. The mechanical properties were evaluated through impact (ASTM E23) and hardness (Rockwell) test. Microstructure observation and XRD analysis was also performed on as cast and tempered samples. The findings indicated that increasing the tempering temperature at 700°C enhanced the hardness and tensile strength of tempered alloyed ductile iron compared to other samples. The enhancement of the mechanical properties of tempered alloyed ductile iron is expected to further expand the applications of ductile iron.


2015 ◽  
Vol 817 ◽  
pp. 472-478
Author(s):  
Jun Ru Li ◽  
Chen Gong ◽  
Le Yu Zhou ◽  
Lie Chen ◽  
Hui Zuo ◽  
...  

In this work, the effects of final heat treatment including quenching and tempering process on mechanical properties of 10Cr12Ni3Mo2VN steel were investigated by orthogonal experimental. It is shown that, the quenching process had a small effect on the strength properties. But the impact property obviously decreased with the increase of quenching temperature, that is due to the grain coarsening. It can be found that tempering temperature is the major factor which affects the mechanical properties. Tempering process had a large effect on the precipitation of carbides and that affected the strength, toughness and plastic greatly. The impact toughness had a minimum after tempered at 650°C between 600°C~700°C. The experimental results show that the M23C6 type carbides precipitated at the grain and martensite lath boundary were the main reason which decreased the impact toughness when tempering temperature increased from 600°C to 650°C.


2011 ◽  
Vol 399-401 ◽  
pp. 211-215
Author(s):  
Yong Heng Zhou ◽  
Kun Yu Zhao ◽  
Xin Liu ◽  
Dong Ye ◽  
Wen Jiang ◽  
...  

There are lath martensite and a little austenite in the microstructure of samples quenched. The original austenite grain sizes ranges from 7.9μm to 74.1μm, which grows up gradually with the increasing of temperature quenching. So do the martensite acicular bundle. During the process of tempering at different temperatures after quenching at 1050°C, austenite grain size becomes bigger with the temperature increasing, and martensite acicular bundle becomes thinner. The content of austenite ascends to the peak at 650°C then it decreases. The mechanical properties (σb =958.87 MPa, δ=20.44%, HRC=30.9) of the samples are the best, when quenching temperature is 1050°C and tempering temperature is 600°C.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2007 ◽  
Vol 26-28 ◽  
pp. 531-534
Author(s):  
B.M. Moon ◽  
Bong Hwan Kim ◽  
Je Sik Shin ◽  
Sang Mok Lee

For thin-walled casting development of austempered ductile iron (ADI), permanent mold casting and accompanied heat treatment practice were systematically investigated to suppress and/or remove chill defects of ductile cast iron (DCI) with various thickness of 2 to 9 mm and to ensure mechanical properties of the final ADI casting. Si content was increased up to 3.8% to reduce the chill formation tendency under a high cooling rate. The residual Mg content remarkably affected the nodule count, while the nodule size and spherodization were proven to have weak relationships. Austenitizing process followed by austempering was very sensitive to chemical compositions (Si and Sn) and heat treatment temperature. As a practical application, the steel bar coupler for a structural frame was tried to produce without subsequent machining.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document