scholarly journals Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing problem

Author(s):  
Avishek Chakraborty ◽  
SANKAR MONDAL ◽  
Animesh Mahata ◽  
Shariful Alam

In this research article, we envisage the neutrosophic number from various distinct rational perspectives & viewpoints to give it a look of a conundrum. We focused & analysed various types of linear and non-linear generalized trapezoidal neutrosophic numbers which serves an indispensable role for uncertainty concept related problem. We also introduce the idea of de-neutrosofication for trapezoidal neutrosophic number using an influx of different logical & innovative methods by which we move with a manifesto to convert a neutrosophic number into a crisp number. Using this concepts of de-neutrosophication, we analyze some real life problem like networking Crash model problem and job-sequencing problem of operation research field when the numbers are in trapezoidal neutrosophic ambience. We also compare our specified result with previously defined score and accuracy function and try to present some interesting and better result without any possible fiasco. This noble thought will help us to solve a plethora of daily life problems in neutrosophic arena.

2021 ◽  
Vol 2 (2) ◽  
pp. 79-88
Author(s):  
Jeevan Kafle ◽  
Bhogendra Kumar Thakur ◽  
Grishma Acharya

Many physical problems in the real world are frequently modeled by ordinary differential equations (ODEs). Real-life problems are usually non-linear, numerical methods are therefore needed to approximate their solution. We consider different numerical methods viz., Explicit (Forward) and Implicit (Backward) Euler method, Classical second-order Runge-Kutta (RK2) method (Heun’s method or Improved Euler method), Third-order Runge-Kutta (RK3) method, Fourth-order Runge-Kutta (RK4) method, and Butcher fifth-order Runge-Kutta (BRK5) method which are popular classical iteration methods of approximating solutions of ODEs. Moreover, an intuitive explanation of those methods is also be presented, comparing among them and also with exact solutions with necessary visualizations. Finally, we analyze the error and accuracy of these methods with the help of suitable mathematical programming software.


2012 ◽  
Vol 2 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Saber Saati ◽  
Adel Hatami-Marbini ◽  
Madjid Tavana ◽  
Elham Hajiahkondi

Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although LP models require well-suited information and precise data, managers and decision makers dealing with optimization problems often have a lack of information on the exact values of some parameters used in their models. Fuzzy sets provide a powerful tool for dealing with this kind of imprecise, vague, uncertain or incomplete data. In this paper, the authors propose a two-fold model which consists of two new methods for solving fuzzy LP (FLP) problems in which the variables and the coefficients of the constraints are characterized by fuzzy numbers. In the first method, the authors transform their FLP model into a conventional LP model by using a new fuzzy ranking method and introducing a new supplementary variable to obtain the fuzzy and crisp optimal solutions simultaneously with a single LP model. In the second method, the authors propose a LP model with crisp variables for identifying the crisp optimal solutions. The authors demonstrate the details of the proposed method with two numerical examples.


1970 ◽  
Author(s):  
Matisyohu Weisenberg ◽  
Carl Eisdorfer ◽  
C. Richard Fletcher ◽  
Murray Wexler

2021 ◽  
Vol 11 (11) ◽  
pp. 4757
Author(s):  
Aleksandra Bączkiewicz ◽  
Jarosław Wątróbski ◽  
Wojciech Sałabun ◽  
Joanna Kołodziejczyk

Artificial Neural Networks (ANNs) have proven to be a powerful tool for solving a wide variety of real-life problems. The possibility of using them for forecasting phenomena occurring in nature, especially weather indicators, has been widely discussed. However, the various areas of the world differ in terms of their difficulty and ability in preparing accurate weather forecasts. Poland lies in a zone with a moderate transition climate, which is characterized by seasonality and the inflow of many types of air masses from different directions, which, combined with the compound terrain, causes climate variability and makes it difficult to accurately predict the weather. For this reason, it is necessary to adapt the model to the prediction of weather conditions and verify its effectiveness on real data. The principal aim of this study is to present the use of a regressive model based on a unidirectional multilayer neural network, also called a Multilayer Perceptron (MLP), to predict selected weather indicators for the city of Szczecin in Poland. The forecast of the model we implemented was effective in determining the daily parameters at 96% compliance with the actual measurements for the prediction of the minimum and maximum temperature for the next day and 83.27% for the prediction of atmospheric pressure.


2021 ◽  
Vol 13 (6) ◽  
pp. 3465
Author(s):  
Jordi Colomer ◽  
Dolors Cañabate ◽  
Brigita Stanikūnienė ◽  
Remigijus Bubnys

In the face of today’s global challenges, the practice and theory of contemporary education inevitably focuses on developing the competences that help individuals to find meaningfulness in their societal and professional life, to understand the impact of local actions on global processes and to enable them to solve real-life problems [...]


Ceramics ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 20-40
Author(s):  
Ambreen Nisar ◽  
Cheng Zhang ◽  
Benjamin Boesl ◽  
Arvind Agarwal

Spark plasma sintering (SPS) has gained recognition in the last 20 years for its rapid densification of hard-to-sinter conventional and advanced materials, including metals, ceramics, polymers, and composites. Herein, we describe the unconventional usages of the SPS technique developed in the field. The potential of various new modifications in the SPS technique, from pressureless to the integration of a novel gas quenching system to extrusion, has led to SPS’ evolution into a completely new manufacturing tool. The SPS technique’s modifications have broadened its usability from merely a densification tool to the fabrication of complex-shaped components, advanced functional materials, functionally gradient materials, interconnected materials, and porous filter materials for real-life applications. The broader application achieved by modification of the SPS technique can provide an alternative to conventional powder metallurgy methods as a scalable manufacturing process. The future challenges and opportunities in this emerging research field have also been identified and presented.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1456
Author(s):  
Stefka Fidanova ◽  
Krassimir Todorov Atanassov

Some of industrial and real life problems are difficult to be solved by traditional methods, because they need exponential number of calculations. As an example, we can mention decision-making problems. They can be defined as optimization problems. Ant Colony Optimization (ACO) is between the best methods, that solves combinatorial optimization problems. The method mimics behavior of the ants in the nature, when they look for a food. One of the algorithm parameters is called pheromone, and it is updated every iteration according quality of the achieved solutions. The intuitionistic fuzzy (propositional) logic was introduced as an extension of Zadeh’s fuzzy logic. In it, each proposition is estimated by two values: degree of validity and degree of non-validity. In this paper, we propose two variants of intuitionistic fuzzy pheromone updating. We apply our ideas on Multiple-Constraint Knapsack Problem (MKP) and compare achieved results with traditional ACO.


2019 ◽  
Vol 1 (1) ◽  
pp. 177-183
Author(s):  
Jan Guncaga ◽  
Lilla Korenova ◽  
Jozef Hvorecky

AbstractLearning is a complex phenomenon. Contemporary theories of education underline active participation of learners in their learning processes. One of the key arguments supporting this approach is the learner’s simultaneous and unconscious development of their ability of “learning to learn”. This ability belongs to the soft skills highly valued by employers today.For Mathematics Education, it means that teachers have to go beyond making calculations and memorizing formulas. We have to teach the subject in its social context. When the students start understanding the relationship between real-life problems and the role of numbers and formulas for their solutions, their learning becomes a part of their tacit knowledge. Below we explain the theoretical background of our approach and provide examples of such activities.


Sign in / Sign up

Export Citation Format

Share Document