scholarly journals New inverse DEA models for budgeting and planning

Author(s):  
Tahere Sayar ◽  
Mojtaba Ghiyasi ◽  
Jafar Fathali

Data envelopment analysis (DEA) measures the efficiency score of a set of homogeneous decision-making units (DMUs) based on observed input and output. Considering input-oriented, the inverse DEA models find the required input level for producing a given amount of production in the current efficiency level. This article proposes a new form of the inverse DEA model considering income (for planning) and budget (for finance and budgeting) constraints. In contrast with the classical inverse model, both input and output levels are variable in proposed models to meet income (or budget) constraints. Proposed models help decision-makers (DMs) to find the required value of each input and each output's income share to meet the income or budget constraint. We apply the proposed model in the efficiency analysis of 58 supermarkets belonging to the same chain. However, these methods are general and can be used in the budgeting and planning process of any production system, including business sectors and firms that provide services.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Azarnoosh Kafi ◽  
Behrouz Daneshian ◽  
Mohsen Rostamy-Malkhalifeh

Data Envelopment Analysis (DEA) is a well-known method that based on inputs and outputs calculates the efficiency of decision-making units (DMUs). Comparing the efficiency and ranking of DMUs in different time periods lets the decision makers to prevent any loss in the productivity of units and improve the production planning. Despite the merits of DEA models, they are not able to forecast the efficiency of future time periods with known input/output records of the DMUs. With this end in view, this study aims at proposing a forecasting algorithm with a 95% confidence interval to generate fuzzy data sets for future time periods. Moreover, managers’ opinions are inserted in the proposed forecasting model. Equipped with the forecasted data sets and with respect to the data sets from previous periods, this model can rightly forecast the efficiency of the future time periods. The proposed procedure also employs the simple geometric mean to discriminate between efficient units. Examples from a real case including 20 automobile firms show the applicability of the proposed algorithm.


Author(s):  
somayeh khezri ◽  
Akram Dehnokhalaji ◽  
Farhad Hosseinzadeh Lotfi

One of interesting subjects in Data Envelopment Analysis (DEA) is estimation of congestion of Decision Making Units (DMUs). Congestion is evidenced when decreases (increases) in some inputs re- sult in increases (decreases) in some outputs without worsening (im- proving) any other input/output. Most of the existing methods for measuring the congestion of DMUs utilize the traditional de nition of congestion and assume that inputs and outputs change with the same proportion. Therefore, the important question that arises is whether congestion will occur or not if the decision maker (DM) increases or de- creases the inputs dis-proportionally. This means that, the traditional de nition of congestion in DEA may be unable to measure the con- gestion of units with multiple inputs and outputs. This paper focuses on the directional congestion and proposes methods for recognizing the directional congestion using DEA models. To do this, we consider two di erent scenarios: (i) just the input direction is available. (ii) none of the input and output directions are available. For each scenario, we propose a method consists in systems of inequalities or linear pro- gramming problems for estimation of the directional congestion. The validity of the proposed methods are demonstrated utilizing two nu- merical examples.


Author(s):  
João Carlos Namorado Clímaco ◽  
João Carlos Soares de Mello ◽  
Lidia Angulo Meza

Data envelopment analysis (DEA) is a non-parametric technique to measure the efficiency of productive units as they transform inputs into outputs. A productive unit has, in DEA terms, an all-encompassing definition. It may as well refer to a factory whose products were made from raw materials and labor or to a school that, from prior knowledge and lessons time, produces more knowledge. All these units are usually named decision making units (DMU). So, DEA is a technique enabling the calculation of a single performance measure to evaluate a system. Although some DEA techniques that cater for decision makers’ preferences or specialists’ opinions do exist, they do not allow for interactivity. Inversely, interactivity is one of the strongest points of many of the multi-criteria decision aid (MCDA) approaches, among which those involved with multi-objective linear programming (MOLP) are found. It has been found for several years that those methods and DEA have several points in common. So, many works have taken advantage of those common points to gain insight from a point of view as the other is being used. The idea of using MOLP, in a DEA context, appears with the Pareto efficiency concept that both approaches share. However, owing to the limitations of computational tools, interactivity is not always fully exploited. In this article we shall show how one, the more promising model in our opinion that uses both DEA and MOLP (Li & Reeves, 1999), can be better exploited with the use of TRIMAP (Climaco & Antunes, 1987, 1989). This computational technique, owing in part to its graphic interface, will allow the MCDEA method potentialities to be better used. MOLP and DEA share several concepts. To avoid naming confusion, the word weights will be used for the weighing coefficients of the objective functions in the multi-objective problem. For the input and output coefficients the word multiplier shall be used. Still in this context, the word efficient shall be used only in a DEA context and, for the MOLP problems, the optimal Pareto solutions will be called non-dominated solutions.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Renbian Mo ◽  
Hongyun Huang ◽  
Liyang Yang

Data envelopment analysis (DEA) is a popular mathematical tool for analyzing the relative efficiency of homogenous decision-making units (DMUs). However, the existing DEA models cannot tackle the newly confronted applications with imprecise and negative data as well as undesirable outputs simultaneously. Thus, we introduce undesirable outputs into modified slack-based measure (MSBM) model and propose an interval-modified slack-based measure (IMSBM) model, which extends the application of interval DEA (IDEA) in fields that concern with less undesirable outputs. The novelties of the model are that it considers the undesirable outputs while dealing with imprecise and negative data, and it is slack-based. Furthermore, the model with undesirable outputs is proven translation-invariant and unit-invariant. Moreover, a numerical example is provided to illustrate the changes of the lower and upper bounds of the efficiency score after considering the undesirable outputs. The empirical results show that, without considering undesirable outputs, most of the lower bounds of the efficiency scores will be overestimated when the DMUs are weakly efficient and inefficient. The upper bound will also change after considering undesirable outputs when the DMU is inefficient. Finally, an improved degree of preference approach is introduced to rank the DMUs.


2021 ◽  
Author(s):  
Abdullah Maraee Aldamak

The field of data envelopment analysis (DEA) has evolved rapidly since its introduction to decision-making science 40 years ago. DEA has since attracted the attention of many researchers because of its unique characteristic to measure the efficiency of multiple-input and multiple-output decision-making units (DMUs) without assigning prior weight to the input and output, unlike most available decision analysis tools. The body of research has resulted in a huge amount of literature and diverse DEA models with very many different approaches. DEA classifies all units under assessment into two groups: efficient with a 100% efficiency score and inefficient with a less than 100% efficiency score. This ability is considered both a strength and a weakness of the standard DEA model because, although it allows DEA to evaluate the efficiency of any dataset, it lacks the power to rank all DMUs, by giving full efficiency scores to many efficient units. This issue has attracted many researchers to investigate the weak discrimination power of classical DEA models, resulting in a subfield of research that focuses on DEA ranking. This thesis focuses on the development of the conventional DEA model, and an attempt has been made to study models that are considered as improved models, or approaches that bring a better ranking field, that may bring more accurate evaluation than the original DEA. After studying DEA ranking models, the thesis presents various models under the optimistic and pessimistic DEA ranking approaches. The first and fundamental contribution are the optimistic and pessimistic free disposal hull (FDH) models. In this study, authentic optimistic and pessimistic DEA models without convexity are developed from both input and output orientation. Further into the research investigation, extended models have been proposed, by combining the conventional and FDH ranking models with other different approaches in the literature. Chapter 4 of this thesis presents three extended FDH models: an FDH slack-based model, an FDH superefficiency model, and a dual frontier without infeasibility super-efficiency FDH model. Chapter 5 shows the development of extended models when virtual DMUs are considered. Improved virtual DMU models and improved FDH virtual DMU models are proposed in order to develop the DEA ranking ability from both optimistic and pessimistic approaches. The final model is an optimistic and pessimistic forecasting approach using regression analysis. The forecasting model can be used by decision makers to determine the resources needed for future planning to build an efficient new unit with reference to the current DMU set.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Farhad Hosseinzadeh-Lotfi ◽  
Gholam-Reza Jahanshahloo ◽  
Mansour Mohammadpour

It is well known that data envelopment analysis (DEA) models are sensitive to selection of input and output variables. As the number of variables increases, the ability to discriminate between the decision making units (DMUs) decreases. Thus, to preserve the discriminatory power of a DEA model, the number of inputs and outputs should be kept at a reasonable level. There are many cases in which an interval scale output in the sample is derived from the subtraction of nonnegative linear combination of ratio scale outputs and nonnegative linear combination of ratio scale inputs. There are also cases in which an interval scale input is derived from the subtraction of nonnegative linear combination of ratio scale inputs and nonnegative linear combination of ratio scale outputs. Lee and Choi (2010) called such interval scale output and input a cross redundancy. They proved that the addition or deletion of a cross-redundant output variable does not affect the efficiency estimates yielded by the CCR or BCC models. In this paper, we present an extension of cross redundancy of interval scale outputs and inputs in DEA models. We prove that the addition or deletion of a cross-redundant output and input variable does not affect the efficiency estimates yielded by the CCR or BCC models.


2021 ◽  
Author(s):  
Abdullah Maraee Aldamak

The field of data envelopment analysis (DEA) has evolved rapidly since its introduction to decision-making science 40 years ago. DEA has since attracted the attention of many researchers because of its unique characteristic to measure the efficiency of multiple-input and multiple-output decision-making units (DMUs) without assigning prior weight to the input and output, unlike most available decision analysis tools. The body of research has resulted in a huge amount of literature and diverse DEA models with very many different approaches. DEA classifies all units under assessment into two groups: efficient with a 100% efficiency score and inefficient with a less than 100% efficiency score. This ability is considered both a strength and a weakness of the standard DEA model because, although it allows DEA to evaluate the efficiency of any dataset, it lacks the power to rank all DMUs, by giving full efficiency scores to many efficient units. This issue has attracted many researchers to investigate the weak discrimination power of classical DEA models, resulting in a subfield of research that focuses on DEA ranking. This thesis focuses on the development of the conventional DEA model, and an attempt has been made to study models that are considered as improved models, or approaches that bring a better ranking field, that may bring more accurate evaluation than the original DEA. After studying DEA ranking models, the thesis presents various models under the optimistic and pessimistic DEA ranking approaches. The first and fundamental contribution are the optimistic and pessimistic free disposal hull (FDH) models. In this study, authentic optimistic and pessimistic DEA models without convexity are developed from both input and output orientation. Further into the research investigation, extended models have been proposed, by combining the conventional and FDH ranking models with other different approaches in the literature. Chapter 4 of this thesis presents three extended FDH models: an FDH slack-based model, an FDH superefficiency model, and a dual frontier without infeasibility super-efficiency FDH model. Chapter 5 shows the development of extended models when virtual DMUs are considered. Improved virtual DMU models and improved FDH virtual DMU models are proposed in order to develop the DEA ranking ability from both optimistic and pessimistic approaches. The final model is an optimistic and pessimistic forecasting approach using regression analysis. The forecasting model can be used by decision makers to determine the resources needed for future planning to build an efficient new unit with reference to the current DMU set.


2018 ◽  
Vol 17 (05) ◽  
pp. 1429-1467 ◽  
Author(s):  
Mohammad Amirkhan ◽  
Hosein Didehkhani ◽  
Kaveh Khalili-Damghani ◽  
Ashkan Hafezalkotob

The issue of efficiency analysis of network and multi-stage systems, as one of the most interesting fields in data envelopment analysis (DEA), has attracted much attention in recent years. A pure serial three-stage (PSTS) process is a specific kind of network in which all the outputs of the first stage are used as the only inputs in the second stage and in addition, all the outputs of the second stage are applied as the only inputs in the third stage. In this paper, a new three-stage DEA model is developed using the concept of three-player Nash bargaining game for PSTS processes. In this model, all of the stages cooperate together to improve the overall efficiency of main decision-making unit (DMU). In contrast to the centralized DEA models, the proposed model of this study provides a unique and fair decomposition of the overall efficiency among all three stages and eliminates probable confusion of centralized models for decomposing the overall efficiency score. Some theoretical aspects of proposed model, including convexity and compactness of feasible region, are discussed. Since the proposed bargaining model is a nonlinear mathematical programming, a heuristic linearization approach is also provided. A numerical example and a real-life case study in supply chain are provided to check the efficacy and applicability of the proposed model. The results of proposed model on both numerical example and real case study are compared with those of existing centralized DEA models in the literature. The comparison reveals the efficacy and suitability of proposed model while the pitfalls of centralized DEA model are also resolved. A comprehensive sensitivity analysis is also conducted on the breakdown point associated with each stage.


Author(s):  
Robabeh Eslami ◽  
Mohammad Khoveyni

Hitherto, the presented models for measuring the efficiency score of multi-stage decision-making units (DMUs) either are nonlinear or require to specify the weights for combining their divisional efficiencies. The nonlinearity leads to high computational complexity for these models, especially when used for problems with enormous dimensions, and also assigning various weights to the divisional efficiencies causes to obtain different efficiency scores for the multi-stage network system. To tackle these problems, this study contributes to network DEA by introducing a novel enhanced Russell graph (ERG) efficiency measure for evaluating the general two-stage series network structures. Then, the proposed model is extended into the general multi-stage series network structures. This study also describes the managerial and economic implications of measuring the efficiency score of the multi-stage DMUs and provides two numerical and empirical examples for illustrating the use of our proposed model.


2020 ◽  
Vol 33 (02) ◽  
pp. 431-445
Author(s):  
Azarnoosh Kafi ◽  
Behrouz Daneshian ◽  
Mohsen Rostamy-Malkhalifeh ◽  
Mohsen Rostamy-Malkhalifeh

Data Envelopment Analysis (DEA) is a well-known method for calculating the efficiency of Decision-Making Units (DMUs) based on their inputs and outputs. When the data is known and in the form of an interval in a given time period, this method can calculate the efficiency interval. Unfortunately, DEA is not capable of forecasting and estimating the efficiency confidence interval of the units in the future. This article, proposes a efficiency forecasting algorithm along with 95% confidence interval to generate interval data set for the next time period. What’s more, the manager’s opinion inserts and plays its role in the proposed forecasting model. Equipped with forecasted data set and with respect to data set from previous periods, the efficiency for the future period can be forecasted. This is done by proposing a proposed model and solving it by the confidence interval method. The proposed method is then implemented on the data of an automotive industry and, it is compared with the Monte Carlo simulation methods and the interval model. Using the results, it is shown that the proposed method works better to forecast the efficiency confidence interval. Finally, the efficiency and confidence interval of 95% is calculated for the upcoming period using the proposed model.


Sign in / Sign up

Export Citation Format

Share Document