scholarly journals Application of electronic nose to effectiveness monitoring of air contaminated with toluene vapors biofiltration process

2018 ◽  
Vol 57 ◽  
pp. 02014
Author(s):  
Bartosz Szulczyński ◽  
Piotr Rybarczyk ◽  
Jacek Gębicki

The research presents the application of electronic nose (combined with MLR model) to on-line effectiveness monitoring of biofiltration of air contaminated with hydrophobic, odorous compound (toluene vapors). The research was conducted using two-section biotrickling filter inhabited by Candida environmental isolates. Gas chromatography was used as the comparative technique to obtain reliable quantification of toluene concentration in the samples. After about 200 hours of the process, a removal efficiency of 49% was obtained.

2020 ◽  
Vol 39 (1) ◽  
pp. 247-259
Author(s):  
Liu Yang ◽  
Molin Qin ◽  
Junchao Yang ◽  
Genwei Zhang ◽  
Jiana Wei

Abstract Gas chromatography (GC) is an important and widely used technique for separation and analysis in the field of analytical chemistry. Micro gas chromatography has been developed in response to the requirement for on-line analysis and on-site analysis. At the core of micro gas chromatography, microelectromechanical systems (MEMs) have the advantages of small size and low power consumption. This article introduces the stationary phases of micro columns in recent years, including polymer, carbon materials, silica, gold nanoparticles, inorganic adsorbents and ionic liquids. Preparation techniques ranging from classical coating to unusual sputtering of stationary phases are reviewed. The advantages and disadvantages of different preparation methods are analyzed. The paper introduces the separation characteristics and application progress of MEMs columns and discusses possible developments.


2005 ◽  
Vol 59 (11) ◽  
pp. 1305-1309 ◽  
Author(s):  
David A. Heaps ◽  
Peter R. Griffiths

Surface-enhanced Raman spectra (SERS) of molecules separated by gas chromatography (GC) were measured off-line by condensing the analyte on a moving, liquid-nitrogen-cooled ZnSe window on which a 5 nm layer of silver had been formed by physical vapor deposition. After the components that eluted from the chromatograph had been deposited, the substrate was allowed to warm up to room temperature and transferred to the focus of a Raman microspectrometer where the spectrum of each component was measured. Band intensities in the spectrum of 3 ng of caffeine prepared in this way were approximately the same as in the spectrum of bulk caffeine. By making some logical assumptions, it was shown that identifiable GC/SERS spectra of 30 pg of many molecules could be measured over a 300 cm−1 region in real-time and that if an optimized substrate were used the minimum identifiable quantity could be reduced to 1 pg or less.


Sign in / Sign up

Export Citation Format

Share Document