Adeno-Associated Virus-Mediated Knockdown of SLC16A11 Improves Glucose Tolerance and Hepatic Insulin Signaling in High Fat Diet-Fed Mice

Author(s):  
Tan Zhang ◽  
Zhengtang Qi ◽  
Haiyan Wang ◽  
Shuzhe Ding

Abstract Background SLC16A11, a member of the SLC16 family, is associated with lipid metabolism, causing increased intracellular triacylglycerol (TAG) levels. In the current study, our primary goal was to determine if an SLC16A11 knockdown would improve glucose tolerance and hepatic insulin signaling in high fat diet (HFD)–fed mice. Additionally, the mechanism for exercise-improved insulin sensitivity remains unclear, and there is no mechanistic insight into SLC16A11’s role in insulin sensitivity under exercise stress. Therefore, we also examined the impact of endurance exercise on the abundance of SLC16A11. Methods C57BL/6 J male mice were fed either regular chow (Control) or HFD for 8 weeks and then injected with adeno-associated virus (AAV). Plasma parameters, tissue lipid contents, glucose tolerance, and expression profiles of hepatic insulin signaling were detected. Also, other mice were divided randomly into sedentary and exercise groups. We assessed hepatic expression of SLC16A11 after 8 weeks of endurance exercise. Results 1) Hepatic SLC16A11 expression was greater in HFD-fed mice compared to Control mice. 2) AAV-mediated knockdown of SLC16A11 improved glucose tolerance, prevented TAG accumulation in serum and liver, and increased phosphorylation of protein kinase B (Akt) and glycogen synthesis kinase-3β (GSK3β) in HFD-fed mice. 3) Endurance exercise decreased hepatic SLC16A11 expression. Conclusions Inactivation of SLC16A11, which is robustly induced by HFD, improved glucose tolerance and hepatic insulin signaling, independent of body weight, but related to TAG. Additionally, SLC16A11 might mediate the health benefits of endurance exercise.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5173 ◽  
Author(s):  
Shibin Ding ◽  
Jinjin Jiang ◽  
Zhe Wang ◽  
Guofu Zhang ◽  
Jianli Yin ◽  
...  

Background Obesity-induced glucose metabolism disorder is associated with chronic, low-grade, systemic inflammation and is considered a risk factor for diabetes and metabolic syndrome. Resveratrol (RES), a natural anti-inflammatory compound, is observed to improve glucose tolerance and insulin sensitivity in obese rodents and humans. This study aimed to test the effects of RES administration on insulin signaling and the inflammatory response in visceral white adipose tissue (WAT) caused by a high-fat diet (HFD) in mice. Methods A total of 40 wild-type C57BL/6 male mice were divided into four groups (10 in each group): the standard chow diet (STD) group was fed a STD; the HFD group was fed a HFD; and the HFD-RES/L and HFD-RES/H groups were fed a HFD plus RES (200 and 400 mg/kg/day, respectively). The L and H in RES/L and RES/H stand for low and high, respectively. Glucose tolerance, insulin sensitivity, circulating inflammatory biomarkers and lipid profile were determined. Quantitative PCR and Western blot were used to determine the expression of CC-chemokine receptor 2 (CCR2), other inflammation markers, glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS-1) and pAkt/Akt and to assess targets of interest involving glucose metabolism and inflammation in visceral WAT. Results HFD increased the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and proinflammatory cytokines in serum, decreased the high-density lipoprotein cholesterol level in serum, and induced insulin resistance and WAT inflammation in mice. However, RES treatment alleviated insulin resistance, increased the expressions of pAkt, GLUT4 and IRS-1 in WAT, and decreased serum proinflammatory cytokine levels, macrophage infiltration and CCR2 expression in WAT. Conclusion Our results indicated that WAT CCR2 may play a vital role in macrophage infiltration and the inflammatory response during the development of insulin resistance in HFD-induced obesity. These data suggested that administration of RES offers protection against abnormal glucose metabolism and inflammatory adaptations in visceral WAT in mice with HFD-induced obesity.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Camila Lubaczeuski ◽  
Luciana Mateus Gonçalves ◽  
Jean Franciesco Vettorazzi ◽  
Mirian Ayumi Kurauti ◽  
Junia Carolina Santos-Silva ◽  
...  

The aim of this study was to investigate the effect of subdiaphragmatic vagotomy on insulin sensitivity, secretion, and degradation in metabolic programmed mice, induced by a low-protein diet early in life, followed by exposure to a high-fat diet in adulthood. Weaned 30-day-old C57Bl/6 mice were submitted to a low-protein diet (6% protein). After 4 weeks, the mice were distributed into three groups: LP group, which continued receiving a low-protein diet; LP + HF group, which started to receive a high-fat diet; and LP + HFvag group, which underwent vagotomy and also was kept at a high-fat diet. Glucose-stimulated insulin secretion (GSIS) in isolated islets, ipGTT, ipITT, in vivo insulin clearance, and liver expression of the insulin-degrading enzyme (IDE) was accessed. Vagotomy improved glucose tolerance and reduced insulin secretion but did not alter adiposity and insulin sensitivity in the LP + HFvag, compared with the LP + HF group. Improvement in glucose tolerance was accompanied by increased insulinemia, probably due to a diminished insulin clearance, as judged by the lower C-peptide : insulin ratio, during the ipGTT. Finally, vagotomy also reduced liver IDE expression in this group. In conclusion, when submitted to vagotomy, the metabolic programmed mice showed improved glucose tolerance, associated with an increase of plasma insulin concentration as a result of insulin clearance reduction, a phenomenon probably due to diminished liver IDE expression.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Darren Mehay ◽  
Sarah Bingaman ◽  
Yuval Silberman ◽  
Amy Arnold

Angiotensin (Ang)-(1-7) is a protective hormone of the renin-angiotensin system that improves insulin sensitivity, glucose tolerance, and energy balance in obese rodents. Our recent findings suggest that Ang-(1-7) activates mas receptors (MasR) in the arcuate nucleus of the hypothalamus (ARC), a brain region critical to control of energy balance and glucose homeostasis, to induce these positive metabolic effects. The distribution of MasR in the ARC and their role in metabolic regulation, however, is unknown. We hypothesized: (1) MasR are expressed in the ARC; and (2) deletion of ARC MasR leads to worsened metabolic outcomes following high fat diet (HFD). To test this, male and female C57Bl/6J mice were fed a 60% HFD or matched control diet ad libitum for 12 weeks. RNAscope in situ hybridization was performed on coronal ARC sections in rostral-middle-caudal regions to determine percentage of MasR positive neurons (n=5/group). In a second experiment, we assessed body composition and insulin and glucose tolerance in transgenic mice with deletion of MasR in ARC neurons (MasR-flox with AAV5-hsyn-GFP-Cre). RNAscope revealed a wide distribution on MasR-positive cells throughout the rostral to caudal extent of the ARC. The average percentage of MasR positive neurons was increased in females versus males, with HFD tending to increase MasR expression in both sexes (control diet male: 11±2; control diet female: 17±3; HFD male: 15±5; HFD female: 24±2; p sex : 0.030; p diet : 0.066; p int : 0.615; two-way ANOVA). Deletion of MasR in ARC neurons worsened insulin sensitivity in HFD but not control diet females (area under the curve for change in glucose from baseline: -1989±1359 HFD control virus vs. 2530±1762 HFD Cre virus; p=0.016), while fasting glucose, glucose tolerance, and body composition did not change. There was no effect of ARC MasR deletion on metabolic outcomes in control diet or HFD male mice. These findings suggest females have more MasR positive neurons in the ARC compared to males, which may be a sex-specific protective mechanism for glucose homeostasis. While further studies are needed to explore the role of ARC MasR in metabolic regulation, these findings support targeting Ang-(1-7) as an innovative strategy in obesity.


2017 ◽  
Vol 29 (10) ◽  
pp. e12528 ◽  
Author(s):  
M. van den Top ◽  
F.-Y. Zhao ◽  
R. Viriyapong ◽  
N. J. Michael ◽  
A. C. Munder ◽  
...  

2014 ◽  
Vol 307 (3) ◽  
pp. R332-R339 ◽  
Author(s):  
Jieyun Yin ◽  
Jian Kuang ◽  
Manisha Chandalia ◽  
Demidmaa Tuvdendorj ◽  
Batbayar Tumurbaatar ◽  
...  

The aim of this study was to investigate effects and mechanisms of electroacupuncture (EA) on blood glucose and insulin sensitivity in mice fed a high-fat diet. Both wild-type (WT) and adipose ectonucleotide pyrophosphate phosphodiesterase (ENPP1) transgenic (TG) mice were fed a high-fat diet for 12 wk; for each mouse, an intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were performed with or without EA at abdomen or auricular areas. A high-fat diet-induced insulin resistance in both WT and TG mice. In the WT mice, EA at 3 Hz and 15 Hz, but not at 1 Hz or 100 Hz, via CV4+CV12 significantly reduced postprandial glucose levels; EA at 3 Hz was most potent. The glucose level was reduced by 61.7% at 60 min and 74.5% at 120 min with EA at 3 Hz (all P < 0.001 vs. control). Similar hypoglycemic effect was noted in the TG mice. On the contrary, EA at auricular points increased postprandial glucose level ( P < 0.03). 4). EA at 3 Hz via CV4+CV12 significantly enhanced the decrease of blood glucose after insulin injection, suggesting improvement of insulin sensitivity. Plasma free fatty acid was significantly suppressed by 42.5% at 15 min and 50.8% at 30 min with EA ( P < 0.01) in both WT and TG mice. EA improves glucose tolerance in both WT and TG mice fed a high-fat diet, and the effect is associated with stimulation parameters and acupoints and is probably attributed to the reduction of free fatty acid.


2018 ◽  
Vol 115 (38) ◽  
pp. E8996-E9005 ◽  
Author(s):  
Brandon M. Gassaway ◽  
Max C. Petersen ◽  
Yulia V. Surovtseva ◽  
Karl W. Barber ◽  
Joshua B. Sheetz ◽  
...  

Insulin resistance drives the development of type 2 diabetes (T2D). In liver, diacylglycerol (DAG) is a key mediator of lipid-induced insulin resistance. DAG activates protein kinase C ε (PKCε), which phosphorylates and inhibits the insulin receptor. In rats, a 3-day high-fat diet produces hepatic insulin resistance through this mechanism, and knockdown of hepatic PKCε protects against high-fat diet-induced hepatic insulin resistance. Here, we employed a systems-level approach to uncover additional signaling pathways involved in high-fat diet-induced hepatic insulin resistance. We used quantitative phosphoproteomics to map global in vivo changes in hepatic protein phosphorylation in chow-fed, high-fat–fed, and high-fat–fed with PKCε knockdown rats to distinguish the impact of lipid- and PKCε-induced protein phosphorylation. This was followed by a functional siRNA-based screen to determine which dynamically regulated phosphoproteins may be involved in canonical insulin signaling. Direct PKCε substrates were identified by motif analysis of phosphoproteomics data and validated using a large-scale in vitro kinase assay. These substrates included the p70S6K substrates RPS6 and IRS1, which suggested cross talk between PKCε and p70S6K in high-fat diet-induced hepatic insulin resistance. These results identify an expanded set of proteins through which PKCε may drive high-fat diet-induced hepatic insulin resistance that may direct new therapeutic approaches for T2D.


2018 ◽  
Vol 50 (8) ◽  
pp. 605-614
Author(s):  
Hong He ◽  
Katie Holl ◽  
Sarah DeBehnke ◽  
Chay Teng Yeo ◽  
Polly Hansen ◽  
...  

Type 2 diabetes is a complex disorder affected by multiple genes and the environment. Our laboratory has shown that in response to a glucose challenge, two-pore channel 2 ( Tpcn2) knockout mice exhibit a decreased insulin response but normal glucose clearance, suggesting they have improved insulin sensitivity compared with wild-type mice. We tested the hypothesis that improved insulin sensitivity in Tpcn2 knockout mice would protect against the negative effects of a high fat diet. Male and female Tpcn2 knockout (KO), heterozygous (Het), and wild-type (WT) mice were fed a low-fat (LF) or high-fat (HF) diet for 24 wk. HF diet significantly increases body weight in WT mice relative to those on the LF diet; this HF diet-induced increase in body weight is blunted in the Het and KO mice. Despite the protection against diet-induced weight gain, however, Tpcn2 KO mice are not protected against HF-diet-induced changes in glucose or insulin area under the curve during glucose tolerance tests in female mice, while HF diet has no significant effect on glucose tolerance in the male mice, regardless of genotype. Glucose disappearance during an insulin tolerance test is augmented in male KO mice, consistent with our previous findings suggesting enhanced insulin sensitivity in these mice. Male KO mice exhibit increased fasting plasma total cholesterol and triglyceride concentrations relative to WT mice on the LF diet, but this difference disappears in HF diet-fed mice where there is increased cholesterol and triglycerides across all genotypes. These data demonstrate that knockout of Tpcn2 may increase insulin action in male, but not female, mice. In addition, both male and female KO mice are protected against diet-induced weight gain, but this protection is likely independent from glucose tolerance, insulin sensitivity, and plasma lipid levels.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e25338 ◽  
Author(s):  
Jide Tian ◽  
Hoa N. Dang ◽  
Jing Yong ◽  
Wing-Sheung Chui ◽  
Matthew P. G. Dizon ◽  
...  

2012 ◽  
Vol 302 (8) ◽  
pp. E987-E991 ◽  
Author(s):  
Linda Yang ◽  
Fumiko Isoda ◽  
Kelvin Yen ◽  
Steven P. Kleopoulos ◽  
William Janssen ◽  
...  

To discover hypothalamic genes that might play a role in regulating energy balance, we carried out a microarray screen for genes induced by a 48-h fast in male C57Bl/6J mouse hypothalamus. One such gene was Fkbp51 (FK506 binding protein 5; Locus NP_034350). The product of this gene is of interest because it blocks glucocorticoid action, suggesting that fasting-induced elevation of this gene in the hypothalamus may reduce glucocorticoid negative feedback, leading to elevated glucocorticoid levels, thus promoting obese phenotypes. Subsequent analysis demonstrated that a 48-h fast induces Fkbp51 in ventromedial, paraventricular, and arcuate hypothalamic nuclei of mice and rats. To assess if hypothalamic Fkbp51 promotes obesity, the gene was transferred to the hypothalamus via an adeno-associated virus vector. Within 2 wk following Fkbp51 overexpression, mice on a high-fat diet exhibited elevated body weight, without hyperphagia, relative to mice receiving the control mCherry vector. Body weight remained elevated for more than 8 wk and was associated with elevated corticosterone and impaired glucose tolerance. These studies suggest that elevated hypothalamic Fkbp51 promotes obese phenotypes.


Sign in / Sign up

Export Citation Format

Share Document