scholarly journals Antimalarial Activity of Bidens pilosa Root Extract Co-spray Dried in the Presence of β-Cyclodextrin or Aerosil:Microcrystalline Cellulose Blend

2021 ◽  
Vol 8 (01) ◽  
pp. e1-e9
Author(s):  
Diego F. Cortés-Rojas ◽  
Thales Lira de Medeiros ◽  
Claudio Bruno Silva de Oliveira ◽  
Ywlliane da Silva Rodrigues Meurer ◽  
Valter Ferreira de Andrade-Neto ◽  
...  

AbstractThe purpose of this work was to evaluate if the antimalarial activity of Bidens pilosa L. root extract could be enhanced by co-spray drying with the pharmaceutical excipients blend of colloidal silicon dioxide:microcrystalline cellulose and β-cyclodextrin. The in vivo antimalarial activity of the products was evaluated in mice infected with Plasmodium berghei. Acute in vivo and in vitro toxicity in S5 HeLa cells were also carried out. B. pilosa L. root extract was lyophilized and used as a control. The spray-dried preparations enhanced the survival of the infected mice compared to the lyophilized crude root extract. The Bidens extract formulations were able to inhibit up to 71% of the growth of the parasite in the lowest tested dose, being about five times more active than the crude extract, thus showing significant partial antiplasmodial activity. The dried preparations did not show signals of toxicity in both the in vitro and in vivo assays. The results showed strong evidence that the co-spray drying of B. pilosa root extract with the selected pharmaceutical excipients might stabilize the bioactive compounds and enhance its antimalarial activity compared with the lyophilized crude extract.

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Noumedem Anangmo Christelle Nadia ◽  
Yamssi Cédric ◽  
Simeni Njonnou Sylvain Raoul ◽  
Ngongang Ouankou Christian ◽  
Mounvera Abdel Azizi ◽  
...  

Background. Malaria is one of the most critical diseases causing about 219 million cases worldwide in developing countries. The spread and development of resistance against chemical antimalarial drugs is one of the major problems associated with malaria control. The present study was to investigate the antimalarial efficacy of ethyl acetate extract and one fraction of Bidens pilosa in vivo in order to support the usage of this plant by traditional healers to treat malaria. Methods. The extracts were prepared by maceration of B. pilosa leaf powder in ethyl acetate. The liquid filtrate of the extract and the best in vitro antiplasmodial fraction using HPLC were concentrated and evaporated using a rotavapor under vacuum to dryness. The antimalarial activity of B. pilosa plant products were evaluated in vivo against Plasmodium berghei infected mice according to the Peter and Rane test. The antimalarial efficacy of the a selected crude extract (ethyl acetate extract) was evaluated at 125, 250, and 500 mg/kg, while a selected fraction from ethyl acetate extract (fraction 12) was evaluated at 62.5 and 125 mg/kg. Blood from experimental animals was collected to assess hematological parameters. Results. The crude extract of ethyl acetate and fraction 12 demonstrated 100% in vivo parasite suppressive activity at doses of 500 mg/kg and 125 mg/kg, respectively, for the crude extract and fraction 12. The mice treated with 250 and 500 mg/kg had their parasitemia (intraerythrocytic phase of P. Berghei) drop considerably, disappearing by the 8th day in mice receiving 500 mg/kg. The ethyl acetate extract of B. pilosa, fraction 12 showed an even higher antiplasmodial activity. By the 5th day of the experiment, the treatment led to a modification of hematological parameters in mice. The chloroquine (5 mg/kg), fraction 12 (125 mg/kg), and the crude extract (500 mg/kg) groups all survived the 30 days of the experiment, while the negative control group registered 100% of the deaths. Conclusion. This study scientifically supports the use of Bidens pilosa leaves in the traditional treatment of malaria. However, the mode of action and in vivo toxicity of the plant still need to be assessed.


2020 ◽  
Vol 25 ◽  
pp. 2515690X2092053 ◽  
Author(s):  
Zemene Demelash Kifle ◽  
Getnet Mequanint Adinew ◽  
Mestayet Geta Mengistie ◽  
Abyot Endale Gurmu ◽  
Engidaw Fentahun Enyew ◽  
...  

Background. The management and control of malaria has become gradually challenging due to the spread of drug-resistant parasites, lack of effective vaccine, and the resistance of vector to insecticides. Consequently, novel agents are urgently needed from different sources including from medicinal plants. In Ethiopia and Uganda, Myrica salicifolia root is traditionally claimed for the treatment of malaria. The aim of this study was to evaluate the in vivo antimalarial activity of root crude extract of M salicifolia. Methods. The parasite, Plasmodium berghei was used in this study since it is an appropriate parasite that is most commonly used because of its higher accessibility. A 4-day suppressive test was employed to evaluate the antimalarial effect of crude extract against early infection. The curative and prophylactic effect of the crude extract was further tested by Rane’s test and residual infection procedure. Parasitemia, survival time, packed cell volume, body weight, and rectal temperature of mice were used as evaluation parameters. Windows SPSS version 24 was used to analyze the data and analysis of variance followed by Tukey’s honestly significant difference to compare results between groups. Results. The root crude extract of M salicifolia significantly ( P < .05-.0001) suppressed parasitemia. The crude extract exhibited a chemosuppression of 40.90. Conclusion. The development of new antimalarial agents and the finding supports the traditional claims and previous in vitro studies.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988532 ◽  
Author(s):  
Dagninet Derebe ◽  
Muluken Wubetu

Failure of the efficacy of antimalarial drugs is recognized in different classes of medicines for treating malaria, which urges the need for new drugs. This study tried to check the in vivo antimalarial activity of the root extracts of Acanthus polystachyus Delile against Plasmodium berghei–infected mice. The study revealed that the methanolic crude extract of the root of Acanthus polystachyus Delile showed significant ( P < .01) parasitemia suppressive activities in both models compared with the negative control. Parasitemia suppressive activities were 25.26%, 33.46%, and 51.48% in a 4-day suppressive test and 23.31%, 31.20%, and 43.54% in prophylaxis test at 100, 200, and 400 mg/kg of the extract, respectively, as compared to the negative control. Besides, the extract increases mean survival time significantly in all tested doses in a 4-day suppressive test, but in the prophylaxis model, only mice treated with 200 and 400 mg/kg significantly lived longer. Based on this finding, the root of Acanthus polystachyus Delile has strong antimalarial activity, which may be a good candidate for new antimalarial agents.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dejen Nureye ◽  
Solomon Assefa ◽  
Teshome Nedi ◽  
Ephrem Engidawork

Background. Evolution of antimalarial drug resistance makes the development of new drugs a necessity. Important source in search of such drugs is medicinal plants.Gardenia ternifoliaplant is used in Ethiopian traditional medicine for the treatment of malaria and is endowed within vitroantimalarial activity. Herein, thein vivoantimalarial activity of the plant was investigated.Methods. Acute toxicity was carried out using a standard procedure. A 4-day suppressive test was employed to evaluate the antimalarial effect of methanolic crude extract and solvent fractions of the plant. The curative and prophylactic effect of crude extract was further tested by Ranes’s test and residual infection procedure, respectively, usingPlasmodium berghei(ANKA strain) in Swiss albino mice.Results. The chemosuppressive effect exerted by the crude extract and fractions ranged between 30-59% and 14-51%, respectively. Curative and prophylactic effects of the crude extract were in the range of 36-63% and 24-37%, respectively. All dose levels of the crude extract prevented loss of weight, reduction in temperature, and anemia on early and established infection. Butanol and chloroform fractions also did reverse reduction in temperature, body weight, and packed cell volume.Conclusions. The results indicated that the plant has a promising antiplasmodial activity and it could be considered as a potential source to develop new antimalarial agents.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tezera Jemere Aragaw ◽  
Kefyalew Ayalew Getahun

Background. Different parts of Brucea antidysenterica are used in traditional and alternative medicine in Ethiopia for the treatment of different health problems including malaria and have good in vitro antimalarial activity. However, no in vivo study was conducted to substantiate the claim. Our study planned to determine the antimalarial effect of B. antidysenterica extract. Methods. Swiss albino mice (6–8 weeks old, 20–28 g) were inoculated with Plasmodium berghei. Different doses of both hydromethanolic extract and chloroform fraction were orally given at 100, 200, and 400 mg/kg/day. Results. The parasitemia suppression percent of hydromethanolic crude extract and chloroform fraction in chemosuppressive tests ranged between 33.48 and 75.93% and 38.32 and 76.64%, respectively. The hydromethanolic crude extract and chloroform fraction exhibited the curative effect of 46.75–70.91% and 50.30–80.06% parasitemia suppression, respectively ( p  < 0.001), compared with negative control. Conclusion. From our study, it is concluded that the hydromethanolic crude extract and chloroform fraction of B. antidysenterica leaves showed promising antiplasmodial effects against Plasmodium berghei. This upholds the folkloric use of B. antidysenterica leaves and the thought of as a possible source to develop new antimalarial agents.


Author(s):  
Kodi Philip ◽  
Peter Kiplagat Cheplogoi ◽  
Mwangi Muthoni Elizabeth ◽  
M. Akala Hoseah ◽  
Moses K. Langat

Aims: The medicinal plant Oncoba spinosa is used by the local communities in Butebo County in Eastern Uganda for treatment of malaria and other diseases. In vitro antiplasmodial activities of the crude extracts and isolated compounds were screened against chloroquine sensitive 3D7 and resistant Dd2 strains. In vivo acute toxicity of the extracts and structure elucidation were also determined in the study. Experimental: Crude extracts of: n-hexane, dichloromethane, ethyl acetate and methanol were prepared. Isolation and purification of these extracts were done using chromatographic techniques which consisted of column and thin layer chromatography. The structures were elucidated on the basis of spectroscopic evidence. In vitro antiplasmodial activity was performed on chloroquine sensitive 3D7 and resistant Dd2 strains of Plasmodium falciparum using SYBR Green 1 assay technique. Lorke’s method of acute toxicity was used to determine the in vivo acute toxicity of the crude extracts in mice. Results: The root ethyl acetate crude extract had highest antiplasmodial activity of IC50:4.69 ± 0.01 µg/mL and 3.52 ± 0.02 µg/mL against 3D7 and Dd2 strains respectively while the remaining three were inactive against both strains of Plasmodium. Isolation resulted in the identification of three known compounds which included: β-sitosterol, benzoic acid and chaulmoogric acid. Among the tested compounds β-sitosterol showed the highest activity of IC50 3D7: 5.51 µM. Dichloromethane and hexane extracts were non-toxic with LD50 > 5000 mg/kg while the EtOAc and MeOH extracts were slightly toxic with LD50 of 547.72 mg/kg. Statistically significance existed between the antiplasmodial activity of the crude extracts and compounds when compared with the controls at (p < 0.05). Extracts and compounds exerted a significant (P < 0.05) decrease in antiplasmodial activity compared to the positive controls. Conclusion: The findings confirm the ethnobotanical use of O. spinosa by the local communities in Butebo County for the treatment of malaria. The results also suggest that the crude extract of this plant is safe and possesses antimalarial activity which can be used as a basis for in vivo and clinical studies to be done. Therefore the plant can offer a potential drug lead for developing a safe, effective and affordable antimalarial.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tezera Jemere Aragaw ◽  
Dessie Tegegne Afework ◽  
Kefyalew Ayalew Getahun

Background. Gardenia ternifolia is utilized in traditional medicine of Ethiopia for malaria treatment and possessing in vitro antimalarial activity. However, no in vivo study was conducted to substantiate the claim. The aim of this study was to judge the antimalarial activity of Gardenia ternifolia extract in vivo in Plasmodium berghei-infected mice. Methods. Plasmodium berghei was inoculated to healthy mice, and hydromethanolic crude extract and chloroform fraction of G. ternifolia leaves at 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day were administered. Percent parasitemia inhibition, percent change in bodyweight, hemoglobin level, and mean survival time were determined. Data were analyzed using one-way ANOVA followed by post hoc Tukey HSD test with IBM SPSS software version 20.0 statistical package and P < 0.05 considered as statistically significant. Results. The chemosuppressive test of hydromethanolic crude extract at 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day ranged from 27.09% to 67.72%, and chloroform fraction had 35.21%–78.19% parasitemia suppression, respectively. For curative test on day 5, hydromethanolic crude extract at 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day ranged from 25.58% to 48.76%, chloroform fraction at 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day and chloroquine base at 10 mg/kg showed 46.36%–74.42% and 92.87% percent parasitemia inhibition, respectively, and also the results to both tests were highly significant ( P < 0.001 ) compared to the negative control. Maximum effects on chemosuppressive, curative, prevention of weight loss, and reduction in hemoglobin were observed at higher doses of the hydromethanolic crude extract and chloroform fraction. Conclusion. From this study, hydromethanolic crude extract and chloroform fraction of G. ternifolia leaves have shown promising antimalarial activity. The findings support the traditional claim of G. ternifolia leaves for malaria treatment; however, species variation could also limit such a straightforward extrapolation of the findings of this study in humans.


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document