Performance of a new integrated CADe/CADx system for detection and characterization of colorectal neoplasia.

Endoscopy ◽  
2021 ◽  
Author(s):  
Jochen Weigt ◽  
Alessandro Repici ◽  
Giulio Antonelli ◽  
Ahmed Afifi ◽  
Leon Kliegis ◽  
...  

Background Artificial Intelligence (AI) may reduce miss rate of colorectal neoplasia at colonoscopy by improving lesion recognition (CADe), and cost of pathology by improving optical diagnosis (CADx). Methods To train a combined CADe and CADx (CAD-EYE,Fujifilm,Japan) based on deep learning, a multicenter library of >200,000 images from 1,572 polyps was used, while testing was performed on two independent image sets (CADe: 446 with polyps and 234 without; CADx: 267) from 234 polyps that was also evaluated by 6 endoscopists (3 experts, 3 non-experts). Results CADe showed a sensitivity, specificity and accuracy of 92.9%, 90.6% and 91.7%, respectively. Experts showed slightly higher accuracy and specificity and a similar sensitivity, while non-experts+CADe showed comparable sensitivity, but lower specificity and accuracy. CADx system showed a sensitivity, specificity and accuracy of 85%, 79.4% and 83.6% for polyp characterization, respectively. Experts comparable performances, while non-experts using CADx showed comparable accuracy, but lower specificity. Conclusions The high accuracy shown by CADe and CADx systems is similar to expert endoscopists, prompting its implementation in clinical practice. When using CAD, non-expert endoscopists achieve similar performances to those of expert endoscopists, with suboptimal specificity.

Endoscopy ◽  
2020 ◽  
Author(s):  
Alanna Ebigbo ◽  
Robert Mendel ◽  
Tobias Rückert ◽  
Laurin Schuster ◽  
Andreas Probst ◽  
...  

Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.


2020 ◽  
Vol 46 (7) ◽  
pp. 478-481 ◽  
Author(s):  
Joshua James Hatherley

Artificial intelligence (AI) is expected to revolutionise the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI’s progress in medicine, however, has led to concerns regarding the potential effects of this technology on relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI systems can be relied on, and are capable of reliability, but cannot be trusted, and are not capable of trustworthiness. Insofar as patients are required to rely on AI systems for their medical decision-making, there is potential for this to produce a deficit of trust in relationships in clinical practice.


2020 ◽  
Vol 1 (2) ◽  
pp. 33-43
Author(s):  
Amporn Atsawarungruangkit ◽  
Yousef Elfanagely ◽  
Akwi W Asombang ◽  
Abbas Rupawala ◽  
Harlan G Rich

2021 ◽  
Author(s):  
Wataru Uegami ◽  
Andrey Bychkov ◽  
Mutsumi Ozasa ◽  
Kazuki Uehara ◽  
Kensuke Kataoka ◽  
...  

Interstitial pneumonia is a heterogeneous disease with a progressive course and poor prognosis, at times even worse than those in the main cancer types. Histopathological examination is crucial for its diagnosis and estimation of prognosis. However, the evaluation strongly depends on the experience of pathologists, and the reproducibility of diagnosis is low. Herein, we propose MIXTURE (huMan-In-the-loop eXplainable artificial intelligence Through the Use of REcurrent training), a method to develop deep learning models for extracting pathologically significant findings based on an expert pathologist's perspective with a small annotation effort. The procedure of MIXTURE consists of three steps as follows. First, we created feature extractors for tiles from whole slide images using self-supervised learning. The similar looking tiles were clustered based on the output features and then pathologists integrated the pathologically synonymous clusters. Using the integrated clusters as labeled data, deep learning models to classify the tiles into pathological findings were created by transfer-learning the feature extractors. We developed three models for different magnifications. Using these extracted findings, our model was able to predict the diagnosis of usual interstitial pneumonia, a finding suggestive of progressive disease, with high accuracy (AUC 0.90). This high accuracy could not be achieved without the integration of findings by pathologists. The patients predicted as UIP had significantly poorer prognosis (five-year overall survival [OS]: 55.4% than those predicted as non-UIP (OS: 95.2%). The Cox proportional hazards model for each microscopic finding and prognosis pointed out dense fibrosis, fibroblastic foci, elastosis, and lymphocyte aggregation as independent risk factors. We suggest that MIXTURE may serve as a model approach to different diseases evaluated by medical imaging, including pathology and radiology, and be the prototype for artificial intelligence that can collaborate with humans.


2021 ◽  
Author(s):  
Peng Zhang ◽  
Fan Lin ◽  
Fei Ma ◽  
Yuting Chen ◽  
Daowen Wang ◽  
...  

SummaryBackgroundWith the increasing demand for atrial fibrillation (AF) screening, clinicians spend a significant amount of time in identifying the AF signals from massive electrocardiogram (ECG) data in long-term dynamic ECG monitoring. In this study, we aim to reduce clinicians’ workload and promote AF screening by using artificial intelligence (AI) to automatically detect AF episodes and identify AF patients in 24 h Holter recording.MethodsWe used a total of 22 979 Holter recordings (24 h) from 22 757 adult patients and established accurate annotations for AF by cardiologists. First, a randomized clinical cohort of 3 000 recordings (1 500 AF and 1 500 non-AF) from 3000 patients recorded between April 2012 and May 2020 was collected and randomly divided into training, validation and test sets (10:1:4). Then, a deep-learning-based AI model was developed to automatically detect AF episode using RR intervals and was tested with the test set. Based on AF episode detection results, AF patients were automatically identified by using a criterion of at least one AF episode of 6 min or longer. Finally, the clinical effectiveness of the model was verified with an independent real-world test set including 19 979 recordings (1 006 AF and 18 973 non-AF) from 19 757 consecutive patients recorded between June 2020 and January 2021.FindingsOur model achieved high performance for AF episode detection in both test sets (sensitivity: 0.992 and 0.972; specificity: 0.997 and 0.997, respectively). It also achieved high performance for AF patient identification in both test sets (sensitivity:0.993 and 0.994; specificity: 0.990 and 0.973, respectively). Moreover, it obtained superior and consistent performance in an external public database.InterpretationOur AI model can automatically identify AF in long-term ECG recording with high accuracy. This cost-effective strategy may promote AF screening by improving diagnostic effectiveness and reducing clinical workload.Research in contextEvidence before this studyWe searched Google Scholar and PubMed for research articles on artificial intelligence-based diagnosis of atrial fibrillation (AF) published in English between Jan 1, 2016 and Aug 1, 2021, using the search terms “deep learning” OR “deep neural network” OR “machine learning” OR “artificial intelligence” AND “atrial fibrillation”. We found that most of the previous deep learning models in AF detection were trained and validated on benchmark datasets (such as the PhysioNet database, the Massachusetts Institute of Technology Beth Israel Hospital AF database or Long-Term AF database), in which there were less than 100 patients or the recordings contained only short ECG segments (30-60s). Our search did not identify any articles that explored deep neural networks for AF detection in large real-world dataset of 24 h Holter recording, nor did we find articles that can automatically identify patients with AF in 24 h Holter recording.Added value of this studyFirst, long-term Holter monitoring is the main method of AF screening, however, most previous studies of automatic AF detection mainly tested on short ECG recordings. This work focused on 24 h Holter recording data and achieved high accuracy in detecting AF episodes. Second, AF episodes detection did not automatically transform to AF patient identification in 24 h Holter recording, since at present, there is no well-recognized criterion for automatically identifying AF patient. Therefore, we established a criterion to identify AF patients by use of at least one AF episode of 6 min or longer, as this condition led to significantly increased risk of thromboembolism. Using this criterion, our method identified AF patients with high accuracy. Finally, and more importantly, our model was trained on a randomized clinical dataset and tested on an independent real-world clinical dataset to show great potential in clinical application. We did not exclude rare or special cases in the real-world dataset so as not to inflate our AF detection performance. To the best of our knowledge, this is the first study to automatically identifies both AF episodes and AF patients in 24 h Holter recording of large real-world clinical dataset.Implications of all the available evidenceOur deep learning model automatically identified AF patient with high accuracy in 24 h Holter recording and was verified in real-world data, therefore, it can be embedded into the Holter analysis system and deployed at the clinical level to assist the decision making of Holter analysis system and clinicians. This approach can help improve the efficiency of AF screening and reduce the cost for AF diagnosis. In addition, our RR-interval-based model achieved comparable or better performance than the raw-ECG-based method, and can be widely applied to medical devices that can collect heartbeat information, including not only the multi-lead and single-lead Holter devices, but also other wearable devices that can reliably measure the heartbeat signals.


2020 ◽  
Vol 08 (11) ◽  
pp. E1584-E1594
Author(s):  
Babu P. Mohan ◽  
Shahab R. Khan ◽  
Lena L. Kassab ◽  
Suresh Ponnada ◽  
Parambir S. Dulai ◽  
...  

Abstract Background and study aims Recently, a growing body of evidence has been amassed on evaluation of artificial intelligence (AI) known as deep learning in computer-aided diagnosis of gastrointestinal lesions by means of convolutional neural networks (CNN). We conducted this meta-analysis to study pooled rates of performance for CNN-based AI in diagnosis of gastrointestinal neoplasia from endoscopic images. Methods Multiple databases were searched (from inception to November 2019) and studies that reported on the performance of AI by means of CNN in the diagnosis of gastrointestinal tumors were selected. A random effects model was used and pooled accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Pooled rates were categorized based on the gastrointestinal location of lesion (esophagus, stomach and colorectum). Results Nineteen studies were included in our final analysis. The pooled accuracy of CNN in esophageal neoplasia was 87.2 % (76–93.6) and NPV was 92.1 % (85.9–95.7); the accuracy in lesions of stomach was 85.8 % (79.8–90.3) and NPV was 92.1 % (85.9–95.7); and in colorectal neoplasia the accuracy was 89.9 % (82–94.7) and NPV was 94.3 % (86.4–97.7). Conclusions Based on our meta-analysis, CNN-based AI achieved high accuracy in diagnosis of lesions in esophagus, stomach, and colorectum.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ilker Ozsahin ◽  
Boran Sekeroglu ◽  
Musa Sani Musa ◽  
Mubarak Taiwo Mustapha ◽  
Dilber Uzun Ozsahin

The COVID-19 diagnostic approach is mainly divided into two broad categories, a laboratory-based and chest radiography approach. The last few months have witnessed a rapid increase in the number of studies use artificial intelligence (AI) techniques to diagnose COVID-19 with chest computed tomography (CT). In this study, we review the diagnosis of COVID-19 by using chest CT toward AI. We searched ArXiv, MedRxiv, and Google Scholar using the terms “deep learning”, “neural networks”, “COVID-19”, and “chest CT”. At the time of writing (August 24, 2020), there have been nearly 100 studies and 30 studies among them were selected for this review. We categorized the studies based on the classification tasks: COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity. The sensitivity, specificity, precision, accuracy, area under the curve, and F1 score results were reported as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%, respectively. However, the presented results should be carefully compared due to the different degrees of difficulty of different classification tasks.


2020 ◽  
Vol 13 (8) ◽  
Author(s):  
Albert K. Feeny ◽  
Mina K. Chung ◽  
Anant Madabhushi ◽  
Zachi I. Attia ◽  
Maja Cikes ◽  
...  

Artificial intelligence (AI) and machine learning (ML) in medicine are currently areas of intense exploration, showing potential to automate human tasks and even perform tasks beyond human capabilities. Literacy and understanding of AI/ML methods are becoming increasingly important to researchers and clinicians. The first objective of this review is to provide the novice reader with literacy of AI/ML methods and provide a foundation for how one might conduct an ML study. We provide a technical overview of some of the most commonly used terms, techniques, and challenges in AI/ML studies, with reference to recent studies in cardiac electrophysiology to illustrate key points. The second objective of this review is to use examples from recent literature to discuss how AI and ML are changing clinical practice and research in cardiac electrophysiology, with emphasis on disease detection and diagnosis, prediction of patient outcomes, and novel characterization of disease. The final objective is to highlight important considerations and challenges for appropriate validation, adoption, and deployment of AI technologies into clinical practice.


2020 ◽  
Author(s):  
Hyo Bong Hong ◽  
Jae-Chan Jeong ◽  
Hans Joachim Krause

In this study, coffee and wine were measured using an microwave resonator, and a deep learning system was trained using the acquired data, and then tested to see if the deep leaning system could distinguish these samples. We tested 6 kinds of wine, 6 kinds of cold brew coffee and 6 kinds of bottled coffee. The microwave resonance spectra of all samples were graphically displayed. The graphical images were processed by an artificial intelligence (AI) technique. By applying deep learning machine technique instead of the peak assignment for complex compounds in general, it was possible to facilitate the classification of coffee or wine with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document