The role of Hedgehog signaling in homoeostasis and pathology of the adult pituitary gland

2013 ◽  
Vol 121 (10) ◽  
Author(s):  
A Uhmann ◽  
H Hahn
Author(s):  
Dr.Suraj Kumbar ◽  
Dr.Lohith BA ◽  
Dr.Ashvinikumar M ◽  
Dr. Amritha R ◽  
Dr. Shameem Banu

We are in technical era where there is more of sedentary life style and stress along with this urbanization is affecting our quality of food and health. This is leading to many lifestyle disorders and hormonal imbalances in our body. Hypothyroidism one among the endocrinal disorder. Thyroid is an endocrinal gland secrets T3 and T4 hormones regulated by TSH which is secreted by Pituitary gland. These hormones have two major effects on the body, 1) To increase the overall metabolic rate in the body 2) To stimulate growth in children. Hypothyroidism is common health issue in India. The highest prevalence of hypothyroidism (13.1%) is noted in people aged 46-54yrs old. With people aged 18-35 yrs being less affected (7.5%). To prevent these hazards Panchakarma is beneficiary to maintain metabolic rate. Here an attempt is made to diagnose hypothyroidism in the light of Ayurveda and management guidelines through Panchakarma.


FACE ◽  
2021 ◽  
pp. 273250162110243
Author(s):  
Mikhail Pakvasa ◽  
Andrew B. Tucker ◽  
Timothy Shen ◽  
Tong-Chuan He ◽  
Russell R. Reid

Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2894-2903 ◽  
Author(s):  
Shinichi Miyagawa ◽  
Daisuke Matsumaru ◽  
Aki Murashima ◽  
Akiko Omori ◽  
Yoshihiko Satoh ◽  
...  

During embryogenesis, sexually dimorphic organogenesis is achieved by hormones produced in the gonad. The external genitalia develop from a single primordium, the genital tubercle, and their masculinization processes depend on the androgen signaling. In addition to such hormonal signaling, the involvement of nongonadal and locally produced masculinization factors has been unclear. To elucidate the mechanisms of the sexually dimorphic development of the external genitalia, series of conditional mutant mouse analyses were performed using several mutant alleles, particularly focusing on the role of hedgehog signaling pathway in this manuscript. We demonstrate that hedgehog pathway is indispensable for the establishment of male external genitalia characteristics. Sonic hedgehog is expressed in the urethral plate epithelium, and its signal is mediated through glioblastoma 2 (Gli2) in the mesenchyme. The expression level of the sexually dimorphic genes is decreased in the glioblastoma 2 mutant embryos, suggesting that hedgehog signal is likely to facilitate the masculinization processes by affecting the androgen responsiveness. In addition, a conditional mutation of Sonic hedgehog at the sexual differentiation stage leads to abnormal male external genitalia development. The current study identified hedgehog signaling pathway as a key factor not only for initial development but also for sexually dimorphic development of the external genitalia in coordination with androgen signaling.


2009 ◽  
Vol 44 (5) ◽  
pp. 372-379 ◽  
Author(s):  
Dae-Hwan Kang ◽  
Myoung-Eun Han ◽  
Moo-Ho Song ◽  
Young-Suk Lee ◽  
Eun-Hee Kim ◽  
...  
Keyword(s):  

Blood ◽  
2014 ◽  
Vol 124 (13) ◽  
pp. 2061-2071 ◽  
Author(s):  
Zhiqiang Liu ◽  
Jingda Xu ◽  
Jin He ◽  
Yuhuan Zheng ◽  
Haiyan Li ◽  
...  

Key Points CD138+ MM cells are a major source of SHH. Autocrine SHH enhances MM drug resistance.


2017 ◽  
Vol 28 (2) ◽  
pp. 233-239 ◽  
Author(s):  
Saikat Mukhopadhyay ◽  
Hemant B. Badgandi ◽  
Sun-hee Hwang ◽  
Bandarigoda Somatilaka ◽  
Issei S. Shimada ◽  
...  

The primary cilium has been found to be associated with a number of cellular signaling pathways, such as vertebrate hedgehog signaling, and implicated in the pathogenesis of diseases affecting multiple organs, including the neural tube, kidney, and brain. The primary cilium is the site where a subset of the cell's membrane proteins is enriched. However, pathways that target and concentrate membrane proteins in cilia are not well understood. Processes determining the level of proteins in the ciliary membrane include entry into the compartment, removal, and retention by diffusion barriers such as the transition zone. Proteins that are concentrated in the ciliary membrane are also localized to other cellular sites. Thus it is critical to determine the particular role for ciliary compartmentalization in sensory reception and signaling pathways. Here we provide a brief overview of our current understanding of compartmentalization of proteins in the ciliary membrane and the dynamics of trafficking into and out of the cilium. We also discuss major unanswered questions regarding the role that defects in ciliary compartmentalization might play in disease pathogenesis. Understanding the trafficking mechanisms that underlie the role of ciliary compartmentalization in signaling might provide unique approaches for intervention in progressive ciliopathies.


1935 ◽  
Vol 31 (11-12) ◽  
pp. 1325-1337
Author(s):  
E. R. Mogilevsky

If we consider the commanding position which the pituitary gland according to modern views occupies in the system of endocrine glands, and compare this with the role which many endocrine glands play in metabolism, then numerous attempts to isolate from the pituitary gland special hormones regulating metabolism will be completely understandable and natural. The search for special metabolic hormones in the pituitary gland is all the more justified because a number of clinical facts have directly suggested the involvement of the pituitary gland in metabolism.


2015 ◽  
Vol 112 (15) ◽  
pp. 4678-4683 ◽  
Author(s):  
Yu Shi ◽  
Jianquan Chen ◽  
Courtney M. Karner ◽  
Fanxin Long

Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.


2021 ◽  
Author(s):  
Brendan Zotter ◽  
Or Dagan ◽  
Jacob Brady ◽  
Hasna Baloui ◽  
Jayshree Samanta ◽  
...  

ABSTRACTPeripheral nerves are organized into discrete cellular compartments. Axons, Schwann cells (SCs), and endoneurial fibroblasts (EFs) reside within the endoneurium and are surrounded by the perineurium - a cellular sheath comprised of layers of perineurial glia (PNG). SC secretion of Desert Hedgehog (Dhh) regulates this organization. In Dhh nulls, the perineurium is deficient and the endoneurium is subdivided into small compartments termed minifascicles. Human Dhh mutations cause a peripheral neuropathy with similar defects. Here we examine the role of Gli1, a canonical transcriptional effector of hedgehog signaling, in regulating peripheral nerve organization. We identify PNG, EFs, and pericytes as Gli1-expressing cells by genetic fate mapping. Although expression of Dhh by SCs and Gli1 in target cells is coordinately regulated with myelination, Gli1 expression unexpectedly persists in Dhh null EFs. Thus, Gli1 is expressed in EFs non-canonically i.e., independent of hedgehog signaling. Gli1 and Dhh also have non-redundant activities. In contrast to Dhh nulls, Gli1 nulls have a normal perineurium. Like Dhh nulls, Gli1 nulls form minifascicles, which we show likely arise from EFs. Thus, Dhh and Gli1 are independent signals: Gli1 is dispensable for perineurial development but functions cooperatively with Dhh to drive normal endoneurial development. During development, Gli1 also regulates endoneurial extracellular matrix production, nerve vascular organization, and has modest, non-autonomous effects on SC sorting and myelination of axons. Finally, in adult nerves, induced deletion of Gli1 is sufficient to drive minifascicle formation. Thus, Gli1 regulates the development and is required to maintain the endoneurial architecture of peripheral nerves.SIGNIFICANCE STATEMENTPeripheral nerves are organized into distinct cellular/ECM compartments: the epineurium, perineurium and endoneurium. This organization, with its associated cellular constituents, are critical for the structural and metabolic support of nerves and their response to injury. Here, we show Gli1 - a transcription factor normally expressed downstream of hedgehog signaling - is required for the proper organization of the endoneurium but not the perineurium. Unexpectedly, Gli1 expression by endoneurial cells is independent of, and functions non-redundantly with, Schwann Cell-derived Desert Hedgehog in regulating peripheral nerve architecture. These results further delineate how peripheral nerves acquire their distinctive organization during normal development and highlight mechanisms that may regulate their reorganization in pathologic settings including peripheral neuropathies and nerve injury.


Sign in / Sign up

Export Citation Format

Share Document