Homeopathic Dilutions, Hahnemann Principles, and the Solvent Issue: Must We Address Ethanol as a “Homeopathic” or a “Chemical” Issue?

Homeopathy ◽  
2017 ◽  
Vol 107 (01) ◽  
pp. 040-044 ◽  
Author(s):  
Salvatore Chirumbolo ◽  
Geir Bjørklund

Introduction Homeopathic remedies usually contain a significant amount of ethanol as a co-solvent with water, a pharmaceutical formulation that may raise some concern when remedies are tested in vitro or in laboratory animals, due to the assessed toxicity of ethanol on cell cultures and organisms. The amount of alcohol in a homeopathic remedy is adjusted following the different homeopathic pharmacopoeias but it is rarely below 30% v/v, which is a molar mass established to meet both Hahnemann's traditional heritage and the hypothetical role of ethanol in “imprinting” water, through the formation of nanobubbles, with the homeopathic activity of the remedy. Aims This article aims at discussing the role of ethanol in homeopathic dilutions and how its chemical nature should affect the experimental approach in homeopathy. Issues Under Debate While the content of ethanol in a homeopathic remedy should be as low as 20% v/v, which is a molar fraction able to catalyze the formation of nanobubbles in a dynamized alcohol–water dilution, this amount raises concern about ethanol toxicology in the experimental research with laboratory animals or in vitro. Several authors diluted 1:100 ethanol 30% v/v from their tested homeopathic dilutions with distilled water to prevent the cytotoxic effect of the alcohol, but in doing so, they probably reduced the ability of ethanol (now 0.3% v/v) to induce the formation of nanobubbles, thus probably affecting the homeopathic property of the same dilution. This may generate concerns about how to manage an experimental setting, to meet both the “chemical” nature of ethanol and its role in “homeopathy,” an issue that is discussed in the article. Conclusion Any author working with homeopathic dilutions containing a molar fraction of ethanol higher than 20% should take into account the fact that ethanol is cytotoxic and may be a catalyst to the formation of nanobubbles, and so should adjust the experimental approach accordingly.

2020 ◽  
Vol 65 (4) ◽  
pp. 817-822
Author(s):  
Olga Pawełczyk ◽  
Marek Asman ◽  
Krzysztof Solarz

Abstract Purpose Fleas are insects with a high medical and veterinary importance. They may participate in spreading of many pathogenic agents, but still there is limited information about their possible reservoir or vector role for protozoans. The main aim of this study was an attempt of detection zoonotic pathogens, such as Babesia microti and Toxoplasma gondii in fleas Ctenocephalides felis felis and Ctenocephalides canis. Methods In 2013–2017, 155 fleas were captured from domestic dogs and cats in veterinary clinics, animal shelters and pet grooming salons in Upper Silesia Region in Poland. Then, the DNA was extracted from each Ctenocephalides flea by using the ammonia method. Samples were screened for the presence of B. microti and T. gondii using PCR and nested PCR methods. Results B. microti was reported in 6.6% of C. felis felis and 9.1% of C. canis, whereas the prevalence of coinfection with B. microti and T. gondii was 1.9% in cat fleas and 2.3% in dog fleas. Conclusion This study shows the first cases of B. microti occurrence and B. microti and T. gondii coinfection in Ctenocephalides fleas. The estimation of prevalence of examined protozoans may be useful considering the possibility of infection among companion animals, as well as during presentation of the potential risk of infection in humans. In order to clarify the role of C. felis felis and C. canis in transmission of B. microti and T. gondii, the another studies with in vitro cultures and laboratory animals are needed.


2010 ◽  
Vol 59 (8) ◽  
pp. 891-897 ◽  
Author(s):  
G. S. Teixeira ◽  
K. L. K. Soares-Brandão ◽  
K. M. G. R. Branco ◽  
J. L. M. Sampaio ◽  
R. M. D. Nardi ◽  
...  

Antagonistic and synergistic substances are important for interactions between micro-organisms associated with human body surfaces, either in healthy or in diseased conditions. In the present study, such compounds produced by Gardnerella vaginalis strains isolated from women with bacterial vaginosis (BV) were detected in vitro and the antagonistic ones were partially characterized. Among 11 G. vaginalis strains tested, all showed antagonistic activity against at least one of the 22 indicator bacteria assayed. Interestingly, for some of these strains, antagonism reverted to synergism, favouring one of the indicator strains (Peptostreptococcus anaerobius) when the growth medium was changed. Partial characterization of antagonistic substances suggested a bacteriocin-like chemical nature. Depending on growth conditions, G. vaginalis isolated from women with BV produced antagonistic or synergistic compounds for other bacterial components of the vaginal ecosystem. This is the first report to our knowledge of the production of antagonistic and/or synergistic substances by G. vaginalis. This ability may be a pivotal factor in understanding BV and the ecological role of this bacterium in the vaginal environment.


2015 ◽  
Vol 61 (4) ◽  
pp. 49-53
Author(s):  
V I Goudochnikov

In this short review article we tried to overview diffusely spread data on the role of stress proteins and hormones in ontogeny. The work presented here is a product of our long-term studies beginning from the middle of eighties of the last century and performed both in Russia and Brazil. It involves the results obtained with the use of experimental models on laboratory animals in vivo and in vitro, as well as later theoretical research in world literature databases. In experimental studies we used laboratory rats of different age groups and primary cultures of pituitary and liver cells for evaluating respectively body and organ growth and production of immunoreactive growth hormone (GH) and serum albumin (SA), as well as biosynthesis of DNA, total RNA and protein. The results obtained, showing important role of glucocorticoids (GC) in regulation of perinatal pituitary and liver functions and postnatal growth, were reinterpreted by us recently in the frame of DOHaD concept and as related to perinatal imprinting/programming phenomena. It is concluded that the present moment is quite appropriate for the widening of our studies both to the side of early embryonal development and in direction to aging, thus completing the whole cycle of life history / course research, as referred to stress proteins and hormones.


2021 ◽  
Vol 12 (1) ◽  
pp. 164-189
Author(s):  
Majid Ghareghani ◽  
Amir Ghanbari ◽  
Ali Eid ◽  
Abdullah Shaito ◽  
Wael Mohamed ◽  
...  

Abstract Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) in which activated immune cells attack the CNS and cause inflammation and demyelination. While the etiology of MS is still largely unknown, the interaction between hormones and the immune system plays a role in disease progression, but the mechanisms by which this occurs are incompletely understood. Several in vitro and in vivo experimental, but also clinical studies, have addressed the possible role of the endocrine system in susceptibility and severity of autoimmune diseases. Although there are several demyelinating models, experimental autoimmune encephalomyelitis (EAE) is the oldest and most commonly used model for MS in laboratory animals which enables researchers to translate their findings from EAE into human. Evidences imply that there is great heterogeneity in the susceptibility to the induction, the method of induction, and the response to various immunological or pharmacological interventions, which led to conflicting results on the role of specific hormones in the EAE model. In this review, we address the role of endocrine system in EAE model to provide a comprehensive view and a better understanding of the interactions between the endocrine and the immune systems in various models of EAE, to open up a ground for further detailed studies in this field by considering and comparing the results and models used in previous studies.


2021 ◽  
Author(s):  
Yunbing Shen ◽  
Long Jiang ◽  
Vaishnavi Srinivasan Iyer ◽  
Bruno Raposo ◽  
Sanjay V. Boddul ◽  
...  

CRISPR/Cas9 can be used as an experimental tool to inactivate genes in cells. However, a CRISPR-targeted cell population will not show a uniform genotype of the targeted gene. Instead, a mix of genotypes is generated - from wild type to different forms of insertions and deletions. Such mixed genotypes complicate analyzing the role of the targeted gene in the studied cell population. Here, we present a rapid experimental approach to functionally analyze a CRISPR-targeted cell population that does not involve generating clonal cell lines. As a simple readout, we leverage the CRISPR-induced genetic heterogeneity and use sequencing to identify how different genotypes are enriched or depleted related to the studied cellular behavior or phenotype. The approach uses standard PCR, Sanger sequencing, and a simple sequence deconvoluting software, enabling laboratories without specific in-depth knowledge to also perform these experiments. As proof of principle, we present examples studying the role of different genes for various aspects related to hematopoietic cells (T cell development in vivo and activation in vitro, macrophage phagocytosis, and a leukemia-like phenotype induced by overexpressing a proto-oncogene). In conclusion, we present a rapid experimental approach to identify potential drug targets related to mature immune cells, as well as normal and malignant hematopoiesis.Highlights‐CRISPR generates genetic heterogeneity at the targeted site.‐Genetic heterogeneity complicates identifying the role of a targeted gene.‐Heterogeneity can be quantified by Sanger sequencing with sufficient sensitivity.‐Enrichment of specific genotypes can be used to identify roles for targeted genes.‐Competitive experiments show the potential of genotype enrichment as a discovery tool.Graphical representation


1983 ◽  
Vol 104 (1) ◽  
pp. 91-95 ◽  
Author(s):  
L.J. Klaff ◽  
J. L. Barron ◽  
N. S. Levitt ◽  
N. Ling ◽  
R. P. Millar

Abstract. The effects of a 210 min infusion of 1.8 nmol/kg somatostatin-14 (SS-14), somatostatin-28 (SS-28), and vehicle (Haemaccel) alone, on arginine- and insulin-stimulated release of pancreatic hormones were tested in 5 normal male subjects. Arginine administered at 30–60 min induced an increase in plasma glucose concentrations which was enhanced by SS-14 and further increased by SS-28. SS-28 was more effective than SS-14 in suppressing the arginine-induced secretion of insulin. Arginine-stimulated and insulin-stimulated (at 120 min) glucagon release was equally suppressed by SS-14 and SS-28, as was insulin-stimulated pancreatic polypeptide secretion. At the end of the SS-14 infusion the mean plasma somatostatin level was approximately 28% of that which occurred during the SS-28 infusion. The results are discussed in relation to similar studies in vitro and in vivo in laboratory animals and to a possible role of the two forms of SS in carbohydrate homeostasis.


1992 ◽  
Vol 5 (2) ◽  
pp. 131-134
Author(s):  
P. Ghezzi

This paper will deal with the role of tumor necrosis factor (TNF) in the pathogenesis of various diseases. However, it will be important to remember that originally TNF was characterized as an antitumor factor. In fact, it was known that endotoxin was able to induce hemorrhagic necrosis of some tumors in mice. In 1975 Carswell et al. demonstrated the presence of a tumor necrotizing activity (termed “tumor necrosis serum”) in the sera of mice primed with C. parvum or BCG, and subsequently injected with endotoxin (1). Later it was found that this factor was a macrophage product and was termed TNF. In vivo TNF induced hemorrhagic necrosis of Meth A sarcoma and in vitro demonstrated cytotoxic activity against various tumor cell lines (2). In 1984, TNF was purified and its cDNA was cloned, and the production of substantial amounts of recombinant TNF allowed the characterization of its various biological activities (3). In parallel to these studies on tumor necrosis, the group of Cerami, at the Rockefeller University in New York was studying the mechanisms of cachexia and wasting associated with infection. They found that infection or injection of endotoxin in laboratory animals resulted in a marked hypertrygliceridemia, which was associated with an inhibition of lipoprotein lipase. They hypothesized that a host-derived mediator was responsible for this and other metabolic derangements observed in infection. This factor, which was termed “cachectin”, was later found to be produced by macrophages, and once it was purified and sequenced it became clear that TNF and cachectin were identical (4).


Author(s):  
Janet H. Woodward ◽  
D. E. Akin

Silicon (Si) is distributed throughout plant tissues, but its role in forages has not been clarified. Although Si has been suggested as an antiquality factor which limits the digestibility of structural carbohydrates, other research indicates that its presence in plants does not affect digestibility. We employed x-ray microanalysis to evaluate Si as an antiquality factor at specific sites of two cultivars of bermuda grass (Cynodon dactvlon (L.) Pers.). “Coastal” and “Tifton-78” were chosen for this study because previous work in our lab has shown that, although these two grasses are similar ultrastructurally, they differ in in vitro dry matter digestibility and in percent composition of Si.Two millimeter leaf sections of Tifton-7 8 (Tift-7 8) and Coastal (CBG) were incubated for 72 hr in 2.5% (w/v) cellulase in 0.05 M sodium acetate buffer, pH 5.0. For controls, sections were incubated in the sodium acetate buffer or were not treated.


Author(s):  
David B. Warheit ◽  
Lena Achinko ◽  
Mark A. Hartsky

There is a great need for the development of a rapid and reliable bioassay to evaluate the pulmonary toxicity of inhaled particles. A number of methods have been proposed, including lung clearance studies, bronchoalveolar lavage analysis, and in vitro cytotoxicity tests. These methods are often limited in scope inasmuch as they measure only one dimension of the pulmonary response to inhaled, instilled or incubated dusts. Accordingly, a comprehensive approach to lung toxicity studies has been developed.To validate the method, rats were exposed for 6 hours or 3 days to various concentrations of either aerosolized alpha quartz silica (Si) or carbonyl iron (CI) particles. Cells and fluids from groups of sham and dust-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, LDH and protein values were measured in BAL fluids at several time points postexposure. Cells were counted and evaluated for viability, as well as differential and cytochemical analysis. In addition, pulmonary macrophages (PM) were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document