eae model
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Amélie Démosthènes ◽  
Benoît Sion ◽  
Fabrice Giraudet ◽  
Xavier Moisset ◽  
Laurence Daulhac ◽  
...  

Among the many symptoms (motor, sensory, and cognitive) associated with multiple sclerosis (MS), chronic pain is a common disabling condition. In particular, neuropathic pain symptoms are very prevalent and debilitating, even in early stages of the disease. Unfortunately, chronic pain still lacks efficient therapeutic agents. Progress is needed (i) clinically by better characterizing pain symptoms in MS and understanding the underlying mechanisms, and (ii) preclinically by developing a more closely dedicated model to identify new therapeutic targets and evaluate new drugs. In this setting, new variants of experimental autoimmune encephalomyelitis (EAE) are currently developed in mice to exhibit less severe motor impairments, thereby avoiding confounding factors in assessing pain behaviors over the disease course. Among these, the optimized relapsing-remitting EAE (QuilA-EAE) mouse model, induced using myelin oligodendrocyte glycoprotein peptide fragment (35–55), pertussis toxin, and quillaja bark saponin, seems very promising. Our study sought (i) to better define sensitive dysfunctions and (ii) to extend behavioral characterization to interfering symptoms often associated with pain during MS, such as mood disturbances, fatigue, and cognitive impairment, in this optimized QuilA-EAE model. We made an in-depth characterization of this optimized QuilA-EAE model, describing for the first time somatic thermal hyperalgesia associated with mechanical and cold allodynia. Evaluation of orofacial pain sensitivity showed no mechanical or thermal allodynia. Detailed evaluation of motor behaviors highlighted slight defects in fine motor coordination in the QuilA-EAE mice but without impact on pain evaluation. Finally, no anxiety-related or cognitive impairment was observed during the peak of sensitive symptoms. Pharmacologically, as previously described, we found that pregabalin, a treatment commonly used in neuropathic pain patients, induced an analgesic effect on mechanical allodynia. In addition, we showed an anti-hyperalgesic thermal effect on this model. Our results demonstrate that this QuilA-EAE model is clearly of interest for studying pain symptom development and so could be used to identify and evaluate new therapeutic targets. The presence of interfering symptoms still needs to be further characterized.


Antibodies ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Ashleigh J. Nicaise ◽  
Amye McDonald ◽  
Erin Rushing Sears ◽  
Trell Sturgis ◽  
Barbara L. F. Kaplan

The environmental contaminant 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) is a ligand for the aryl hydrocarbon receptor (AhR). TCDD is well-characterized to produce immunotoxicity, including suppression of antibody production. Previously we showed that TCDD inhibited myelin oligodendrocyte glycoprotein (MOG) peptide-specific IgG and attenuated disease in experimental autoimmune encephalomyelitis (EAE) model in mice. Thus, the purpose of this study was to characterize the effects of TCDD on IgG subclasses in EAE and in vitro and assess effects in B cells derived from various tissues. TCDD modestly suppressed intracellular IgG expression in splenocytes (SPLC), but not bone marrow (BM) or lymph node (LN) cells. To further understand TCDD’s effects on IgG, we utilized LPS and LPS + IL-4 in vitro to stimulate IgG3 and IgG1 production, respectively. TCDD preferentially suppressed IgG1+ cell surface expression, especially in SPLC. However, TCDD was able to suppress IgG1 and IgG3 secretion from SPLC and B cells, but not BM cells. Lastly, we revisited the EAE model and determined that TCDD suppressed MOG-specific IgG1 production. Together these data show that the IgG1 subclass of IgG is a sensitive target of suppression by TCDD. Part of the pathophysiology of EAE involves production of pathogenic antibodies that can recruit cytolytic cells to destroy MOG-expressing cells that comprise myelin, so inhibition of IgG1 likely contributes to TCDD’s EAE disease attenuation.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Carolina Prado ◽  
Francisco Osorio-Barrios ◽  
Paulina Falcón ◽  
Alexandra Espinoza ◽  
Juan José Saez ◽  
...  

Abstract Background Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. Methods Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. Results Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. Conclusions Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity.


2021 ◽  
Author(s):  
Yingkai Wang ◽  
Yunpeng Zhao ◽  
Mingzhu Ye ◽  
Ling Wang ◽  
Tianshu Lan ◽  
...  

Abstract Background: Multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS), leads to demyelination, neuronal injury, and loss of white matter, yet still can't be cured. Exosomes are double-layered membrane vesicles of 30–200 nm in size, which can easily penetrate the blood–brain barrier (BBB). Exosomes derived from umbilical cord mesenchymal stem cells exosomes (UMSC-exos) has been shown to treat experimental autoimmune encephalomyelitis (EAE) through the action of anti-inflammatory and immunomodulatory, but its clinical translation has been hampered by their inefficacious accumulation in CNS. Therefore, we developed a TAxI-peptide-chimeric UMSC-exos termed TAxI-exos for CNS-specific accumulation and curative effect in EAE.Methods: We used an EAE model in vivo, and actived T cells and BV-2 cells models in vitro. After two immunizations to establish the EAE model, UMSC-exos, TAxI-exos or DiR labeled exosomes were administered to EAE mice EAE mice for one dose (150μg) before the peak at day 15. On day 30, the mice were sacrificed to collect spinal cords, spleens, and blood for analysis of demyelination, inflammation, microglia, the proportions of T-cell subsets, and the expression of inflammatory cytokines. In vitro, for immune mechanism analyses, PBMCs and splenocytes isolated from healthy C57BL/6 mice, were activated and incubated with 0.15mg/mL UMSC-exos or TAxI-exos. Activated BV-2 cells were used to explore the targeting-ability and polarization-regulating ability of UMSC-exos and TAxI-exos.Results: As expected, TAxI-exos had significant curative effects in EAE mice compared with UMSC-exos via an enhanced targeting-ability. The treatment alleviated inflammation, facilitated microglial cell polarization from M1 to M2, reduced the proportions of T-cell subsets, increased the expression levels of IL-4, IL-10, TGF-β, and IDO-1, and decreased the levels of IL-2, IL-6, IL-17A, IFN-γ, and TNF-α. Conclusions: TAxI-exos have a great CNS-targeting ability and suppress pathological processes in EAE mice, which have a great potential therapeutic utility for MS and other CNS diseases.


2021 ◽  
Author(s):  
Ying-Chyi Song ◽  
Chuan-Teng Liu ◽  
Hui-Ju Lee ◽  
Hung-Rong Yen

Abstract BackgroundMultiple sclerosis (MS) is a neuroinflammatory autoimmune disease characterized by multifocal perivascular infiltration of immune cells in the central nervous system (CNS). Current treatment for MS is unsatisfactory, and we aimed to search for immunomodulatory agents from bioactive constituents of natural origin. Cordycepin (3'-deoxyadenosine), an adenosine analogue initially extracted from the fungus Cordyceps militarisa, is one of the candidates that has multiple actions. However, its effect on MS is unknown.MethodsWe first investigated the in vitro effects of cordycepin on mouse and human dendritic cells, microglial cells, macrophages, and T cell subsets. Cordycepin was administered to the experimental autoimmune encephalomyelitis (EAE) model at various time points to evaluate the effects in preventive and therapeutic model. Chemokine array and next-generation sequencing (NGS) were applied to identify the key molecules and genes involved in the mechanism. ResultsCordycepin attenuated the activation of LPS-induced mouse bone marrow-derived dendritic cells (BMDCs) and human monocyte-derived dendritic cells (MoDCs) through the inhibition of the AKT, ERK, NF-κB, and ROS pathways and impaired the migration of BMDCs through the downregulation of adhesion molecules and chemokine receptors in vitro. In EAE model, preventive treatment with cordycepin decreased the expression of trafficking factors in the CNS, inhibited the secretion of inflammatory cytokines (IFN-g , IL-6, TNF-a, and IL-17) induced by specific peptides, and attenuated clinical symptoms. A chemokine array indicated that cordycepin treatment reversed the high levels of CCL6, PARRES2, IL-16, CXCL10, and CCL12 in the brain and spinal cord of EAE mice, consistent with the RNA-seq data. Moreover, cordycepin suppressed the release of neuroinflammatory cytokines by activated microglial cells, macrophages, Th17 cells, Tc1 cells, and Th1 cells in vitro. Furthermore, cordycepin treatment exerted therapeutic effects on attenuating the clinical disease severity in the early disease onset stage and late disease progression stage. ConclusionsOur study suggests that cordycepin treatment may not only prevent the occurrence of MS by inhibiting DC activation and migration but also potentially ameliorates the progression of MS by reducing neuroinflammation, which may provide insights into the development of new approaches for the treatment of MS.


2021 ◽  
Vol 15 ◽  
Author(s):  
Magdalena Dubik ◽  
Joanna Marczynska ◽  
Marlene T. Mørch ◽  
Gill Webster ◽  
Kirstine Nolling Jensen ◽  
...  

The pathological hallmark of multiple sclerosis (MS) is the formation of multifocal demyelinating lesions in the central nervous system (CNS). Stimulation of innate receptors has been shown to suppress experimental autoimmune encephalomyelitis (EAE), an MS-like disease in mice. Specifically, targeting Toll-like receptor 9 (TLR9) and NOD-like receptor 2 (NOD2) significantly reduced disease severity. In the present work we have developed a novel focal EAE model to further study the effect of innate signaling on demyelinating pathology. Focal lesions were induced by stereotactic needle insertion into the corpus callosum (CC) of mice previously immunized for EAE. This resulted in focal pathology characterized by infiltration and demyelination in the CC. We find that intrathecal delivery of MIS416, a TLR9 and NOD2 bispecific innate ligand, into the cerebrospinal fluid reduced focal lesions in the CC. This was associated with upregulation of type I and II interferons, interleukin-10, arginase-1, CCL-2 and CXCL-10. Analysis of draining cervical lymph nodes showed upregulation of type II interferons and interleukin 10. Moreover, intrathecal MIS416 altered the composition of early CNS infiltrates, increasing proportions of myeloid and NK cells and reducing T cells at the lesion site. This study contributes to an increased understanding of how innate immune responses can play a protective role, which in turn may lead to additional therapeutic strategies for the prevention and treatment of demyelinating pathologies.


Redox Biology ◽  
2021 ◽  
pp. 102053
Author(s):  
Judong Kim ◽  
S.M. Touhidul Islam ◽  
Fei Qiao ◽  
Avtar K. Singh ◽  
Mushfiquddin Khan ◽  
...  
Keyword(s):  
B Cell ◽  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Louisa Nitsch ◽  
Simon Petzinna ◽  
Julian Zimmermann ◽  
Linda Schneider ◽  
Marius Krauthausen ◽  
...  

Abstract Background Interleukin 23 is a critical cytokine in the pathogenesis of multiple sclerosis. But the local impact of interleukin 23 on the course of neuroinflammation is still not well defined. To further characterize the effect of interleukin 23 on CNS inflammation, we recently described a transgenic mouse model with astrocyte-specific expression of interleukin 23 (GF-IL23 mice). The GF-IL23 mice spontaneously develop a progressive ataxic phenotype with cerebellar tissue destruction and inflammatory infiltrates with high amounts of B cells most prominent in the subarachnoid and perivascular space. Methods To further elucidate the local impact of the CNS-specific interleukin 23 synthesis in autoimmune neuroinflammation, we induced a MOG35-55 experimental autoimmune encephalomyelitis (EAE) in GF-IL23 mice and WT mice and analyzed the mice by histology, flow cytometry, and transcriptome analysis. Results We were able to demonstrate that local interleukin 23 production in the CNS leads to aggravation and chronification of the EAE course with a severe paraparesis and an ataxic phenotype. Moreover, enhanced multilocular neuroinflammation was present not only in the spinal cord, but also in the forebrain, brainstem, and predominantly in the cerebellum accompanied by persisting demyelination. Thereby, interleukin 23 creates a pronounced proinflammatory response with accumulation of leukocytes, in particular B cells, CD4+ cells, but also γδ T cells and activated microglia/macrophages. Furthermore, transcriptome analysis revealed an enhanced proinflammatory cytokine milieu with upregulation of lymphocyte activation markers, co-stimulatory markers, chemokines, and components of the complement system. Conclusion Taken together, the GF-IL23 model allowed a further breakdown of the different mechanisms how IL-23 drives neuroinflammation in the EAE model and proved to be a useful tool to further dissect the impact of interleukin 23 on neuroinflammatory models.


2021 ◽  
Vol 16 (2) ◽  
pp. 370-371
Author(s):  
Xiaofang Wang ◽  
Erin A. Kimbrel ◽  
Kumiko Ijichi ◽  
Debayon Paul ◽  
Adam S. Lazorchak ◽  
...  

2021 ◽  
Author(s):  
Liangpeng Wei ◽  
Zhenyi Xue ◽  
Baihui Lan ◽  
Shiyang Yuan ◽  
Yuanyuan Li ◽  
...  

Abstract Background Multiple sclerosis (MS) is a chronic disease in the central nervous system (CNS), characterized by inflammatory cells invade into the brain and the spinal cord. Among a bulk of different MS models, the rodent model of experimental autoimmune encephalomyelitis (EAE) is the most widely used and best understood. Arctigenin, a botanical extract from Arctium lappa, is reported to exhibit pharmacological properties including anti-inflammation and neuroprotection. However, the effects of Arctigenin on neural activity attacked by inflammation in MS are still unclear.Methods Female C57BL/6 mice were expressed by an ultra-sensitive protein calcium sensor GCamp6f in somatosensory cortex neurons through stereotaxic virus injection. Then we induced EAE model in mice with myelin oligodendrocyte glycoprotein (MOG) peptide (35-55) and used two-photon calcium imaging to chronically observe cortical activity in vivo throughout the disease progression. Besides, we performed whole-cell electrophysiological recording to determine the frequency of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated spontaneous excitatory postsynaptic current (sEPSC) in cortical brain slices of preclinical EAE mice.ResultsHere we found added hyperactive cells, calcium influx, network connectivity and synchronization, mainly at preclinical stage of EAE model. Besides, more silent cells and decreased calcium influx and reduced network synchronization accompanied by a compensatory rise in functional connectivity were found at the remission stage. Arctigenin treatment not only restricted inordinate individually neural spiking, calcium influx and network activity at preclinical stage, but also restored neuronal activity and communication at remission stage. In addition, we confirmed that the frequency of AMPA receptor-sEPSC was also increased at preclinical stage and can be blunted by Arctigenin. Conclusions Our findings suggest that excitotoxicity resulted from calcium influx is involved in EAE at preclinical stage. Moreover, Arctigenin exerts neuroprotective effect by limiting hyperactivity at preclinical stage and ameliorates EAE symptoms, indicating Arctigenin could be a potential therapeutic drug for neuroprotection in MS-related neuropsychological disorders.


Sign in / Sign up

Export Citation Format

Share Document