Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis

2003 ◽  
Vol 89 (03) ◽  
pp. 561-572 ◽  
Author(s):  
Ronald Aimes ◽  
Andries Zijlstra ◽  
John Hooper ◽  
Steven Ogbourne ◽  
Mae-Le Sit ◽  
...  

SummaryMany serine proteases play important regulatory roles in complex biological systems, but only a few have been linked directly with capillary morphogenesis and angiogenesis. Here we provide evidence that serine protease activities, independent of the plasminogen activation cascade, are required for microvascular endothelial cell reorganization and capillary morphogenesis in vitro. A homology cloning approach targeting conserved motifs present in all serine proteases, was used to identify candidate serine proteases involved in these processes, and revealed 5 genes (acrosin, testisin, neurosin, PSP and neurotrypsin), none of which had been associated previously with expression in endothelial cells. A subsequent gene-specific RT-PCR screen for 22 serine proteases confirmed expression of these 5 genes and identified 7 additional serine protease genes expressed by human endothelial cells, urokinase-type plasminogen activator, protein C, TMPRSS2, hepsin, matriptase/ MT-SP1, dipeptidylpeptidase IV, and seprase. Differences in serine protease gene expression between microvascular and human umbilical vein endothelial cells (HUVECs) were identified and several serine protease genes were found to be regulated by the nature of the substratum, ie. artificial basement membrane or fibrillar type I collagen. mRNA transcripts of several serine protease genes were associated with blood vessels in vivo by in situ hybridization of human tissue specimens. These data suggest a potential role for serine proteases, not previously associated with endothelium, in vascular function and angiogenesis.

2000 ◽  
Vol 279 (1) ◽  
pp. H293-H302 ◽  
Author(s):  
Maria Luiza C. Albuquerque ◽  
Christopher M. Waters ◽  
Ushma Savla ◽  
H. William Schnaper ◽  
Annette S. Flozak

Repair of the endothelium occurs in the presence of continued blood flow, yet the mechanisms by which shear forces affect endothelial wound closure remain elusive. Therefore, we tested the hypothesis that shear stress enhances endothelial cell wound closure. Human umbilical vein endothelial cells (HUVEC) or human coronary artery endothelial cells (HCAEC) were cultured on type I collagen-coated coverslips. Cell monolayers were sheared for 18 h in a parallel-plate flow chamber at 12 dyn/cm2 to attain cellular alignment and then wounded by scraping with a metal spatula. Subsequently, the monolayers were exposed to a laminar shear stress of 3, 12, or 20 dyn/cm2 under shear-wound-shear (S-W-sH) or shear-wound-static (S-W-sT) conditions for 6 h. Wound closure was measured as a percentage of original wound width. Cell area, centroid-to-centroid distance, and cell velocity were also measured. HUVEC wounds in the S-W-sH group exposed to 3, 12, or 20 dyn/cm2 closed to 21, 39, or 50%, respectively, compared with only 59% in the S-W-sT cells. Similarly, HCAEC wounds closed to 29, 49, or 33% (S-W-sH) compared with 58% in the S-W-sT cells. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate. These results suggest that physiological levels of shear stress enhance endothelial repair.


2000 ◽  
Vol 84 (08) ◽  
pp. 325-331 ◽  
Author(s):  
M. J. B. Wissink ◽  
M. J. A. van Luyn ◽  
R. Beernink ◽  
F. Dijk ◽  
A. A. Poot ◽  
...  

SummaryEndothelial cell seeding, a promising method to improve the performance of small-diameter vascular grafts, requires a suitable substrate, such as crosslinked collagen. Commonly used crosslinking agents such as glutaraldehyde and formaldehyde cause, however, cytotoxic reactions and thereby hamper endothelialization of currently available collagen-coated vascular graft materials.The aim of this study was to investigate the effects of an alternative method for crosslinking of collagen, using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS), on various cellular functions of human umbilical vein endothelial cells (HUVECs) in vitro. Compared to non-crosslinked type I collagen, proliferation of seeded endothelial cells was significantly increased on EDC/NHS-crosslinked collagen. Furthermore, higher cell numbers were found with increasing crosslink densities. Neither the morphology of the cells nor the secretion of prostacyclin (PGI2), von Willebrand factor (vWF), tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI-1) was affected by the crosslink density of the collagen substrate. Therefore, EDC/NHScrosslinked collagen is candidate substrate for in vivo application such as endothelial cell seeding of collagen-coated vascular grafts.


Author(s):  
Vernella V. Vickerman Kelley ◽  
Roger D. Kamm

The in vivo microvasculature is a dynamic structure which is influenced by both biochemical (e.g. cytokines, growth factors) and biophysical factors (e.g. shear stress, interstitial flow). Important regulators of this structure are the endothelial cells which are normally quiescent but under certain conditions are able to form new vascular sprouts. Investigations into the mechanism of capillary morphogenesis of human endothelial cells warrant an in vitro model that closely mimics the physiological in vivo microenvironment. To this end, we have developed a novel microfabricated system which permits 2D and 3D culture of endothelial cells in biologically derived (e.g. type I collagen) or synthetic (self assembling peptides) scaffolds and delivers control flow rates and pressures. This system offers tremendous flexibility with regard to scaffold physical and chemical properties, physiologically relevant mechanical stress induced by surface shear and interstitial flow as well as chemotactic gradients. In addition we are able to directly monitor the progression of vascular networks in response to these critical factors.


1992 ◽  
Vol 119 (3) ◽  
pp. 643-652 ◽  
Author(s):  
S D Banerjee ◽  
B P Toole

Previous studies from several laboratories have provided evidence that interaction of hyaluronan (HA) with the surface of endothelial cells may be involved in endothelial cell behavior. We have recently characterized a mAb, mAb IVd4, that recognizes and neutralizes HA-binding protein (HABP) from a wide variety of cell types from several different species (Banerjee, S. D., and B. P. Toole. 1991. Dev. Biol. 146:186-197). In this study we have found that mAb IVd4 inhibits migration of endothelial cells from a confluent monolayer after "wounding" of the monolayer. HA hexasaccharide, a fragment of HA with the same disaccharide composition as polymeric HA, also inhibits migration. In addition, both reagents inhibit morphogenesis of capillary-like tubules formed in gels consisting of type I collagen and basement membrane components. Immunocytology revealed that the antigen recognized by mAb IVd4 becomes localized to the cell membrane of migrating cells, including many of their lamellipodia. Treatment with high concentrations of HA hexamer causes loss of immunoreactivity from these structures. We conclude that HABP recognized by mAb IVd4 is involved in endothelial cell migration and tubule formation.


1997 ◽  
Vol 77 (05) ◽  
pp. 1014-1019 ◽  
Author(s):  
W Craig Hooper ◽  
Donald J Phillips ◽  
Bruce L Evatt

SummaryWe have recently demonstrated that the proinflammatory cytokine, interleukin-6 (IL-6), could upregulate the production of protein S in the human hepatoma cell line, HepG-2, but not in endothelial cells. In this study, we have demonstrated that the combination of exogenous IL-6 and soluble IL-6 receptor (sIL-6R) could significantly upregulate protein S production in both primary human umbilical vein endothelial cells (HUVEC) and in the immortalized human microvascular endothelial cell line, HMEC-1. The IL-6/sIL-6R complex was also able to rapidly induce tyrosine phosphorylation of the IL-6 transducer, gpl30. Neutralizing antibodies directed against either IL-6 or gpl30 blocked protein S upregulation by the IL-6/sIL-6R complex. It was also observed that exogenous sIL-6R could also upregulate protein S by forming a complex with IL-6 constitutively produced by the endothelial cell. Two other cytokines which also utilize the gpl30 receptor, oncostatin M (OSM) and leukemia inhibitory factor (LIF), were also able to upregulate endothelial cell protein S. This study demonstrates a mechanism that allows endothelial cells to respond to IL-6 and also illustrates the potential importance of circulating soluble receptors in the regulation of the anticoagulation pathway.


2001 ◽  
Vol 90 (6) ◽  
pp. 2279-2288 ◽  
Author(s):  
Martin H. Beauchamp ◽  
Ana Katherine Martinez-Bermudez ◽  
Fernand Gobeil ◽  
Anne Marilise Marrache ◽  
Xin Hou ◽  
...  

Microvascular degeneration is an important event in oxygen-induced retinopathy (OIR), a model of retinopathy of prematurity. Because oxidant stress abundantly generates thromboxane A2(TxA2), we tested whether TxA2plays a role in retinal vasoobliteration of OIR and contributes to such vascular degeneration by direct endothelial cytotoxicity. Hyperoxia-induced retinal vasoobliteration in rat pups (80% O2exposure from postnatal days 5–14) was associated with increased TxB2generation and was significantly prevented by TxA2synthase inhibitor CGS-12970 (10 mg · kg−1· day−1) or TxA2-receptor antagonist CGS-22652 (10 mg · kg−1· day−1). TxA2mimetics U-46619 (EC5050 nM) and I-BOP (EC505 nM) caused a time- and concentration-dependent cell death of neuroretinovascular endothelial cells from rats as well as newborn pigs but not of smooth muscle and astroglial cells; other prostanoids did not cause cell death. The peroxidation product 8-iso-PGF2, which is generated in OIR, stimulated TxA2formation by endothelial cells and triggered cell death; these effects were markedly diminished by CGS-12970. TxA2-dependent neuroretinovascular endothelial cell death was mostly by necrosis and to a lesser extent by apoptosis. The data identify an important role for TxA2in vasoobliteration of OIR and unveil a so far unknown function for TxA2in directly triggering neuroretinal microvascular endothelial cell death. These effects of TxA2might participate in other ischemic neurovascular injuries.


1992 ◽  
Vol 1 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Carlton Young ◽  
Bruce E. Jarrell ◽  
James B. Hoying ◽  
Stuart K. Williams

The transplantation of endothelial cells represents a technology which has been suggested for applications ranging from improvement in function of implanted vascular devices to genetic therapy. The use of microvascular endothelial cell transplantation has seen increased use both in animal studies as well as clinical use. This report describes our techniques for the isolation and establishment of initial cultures of microvascular endothelial cells derived from porcine fat. A variety of anatomic sites within the pig were evaluated to determine the appropriateness of different sources of fat for endothelial cell isolation. The properitoneal fat was determined to be optimal due to the predominance of endothelium in this tissue and the ease of isolation of microvascular endothelium following collagenase digestion. The study of endothelial cell transplantation in the porcine model is now possible using the methods described for adipose tissue-derived micro vessel endothelial cell isolation.


1991 ◽  
Vol 278 (3) ◽  
pp. 863-869 ◽  
Author(s):  
E M L Tan ◽  
J Peltonen

Keloids are benign cutaneous tumours characterized by excess deposition of collagen, specifically type I collagen. We report here that collagen biosynthesis, as measured by hydroxyproline synthesis, was markedly inhibited by 65-80% by the combination of endothelial cell growth factor (ECGF) supplement and heparin in keloid fibroblast cultures. Fibroblast cultures that were incubated with ECGF alone also demonstrated a measurable decrease of approx. 50% in collagen synthesis compared with control cultures. The inhibition of collagen synthesis was related to the down-regulation of collagen gene expression. Quantitative measurements of mRNA-cDNA hybrids revealed that the gene expression of collagen type I was decreased by more than 80% by heparin and ECGF. Markedly diminished levels of mRNA encoding collagen type I were also observed in cultures incubated with ECGF alone. The results show that ECGF and heparin elicit a negative regulatory effect on collagen production, and that this inhibition is due largely to the down-regulation of the pro-alpha 1(I) of type I collagen gene. Furthermore, ECGF has a potent suppressive effect, and heparin provides an additive effect to this inhibitory phenomenon.


1987 ◽  
Vol 87 (2) ◽  
pp. 357-362
Author(s):  
J. Gavrilovic ◽  
R.M. Hembry ◽  
J.J. Reynolds ◽  
G. Murphy

A specific antiserum to purified rabbit tissue inhibitor of metalloproteinases (TIMP) was raised in sheep, characterized and used to investigate the role of TIMP in a model system. Chondrocytes and endothelial cells cultured on 14C-labelled type I collagen films and stimulated to produce collagenase were unable to degrade the films unless the anti-TIMP antibody was added. The degradation induced was inhibited by a specific anti-rabbit collagenase antibody. It was concluded that TIMP is a major regulatory factor in cell-mediated collagen degradation.


Sign in / Sign up

Export Citation Format

Share Document