Glucose and Insulin Modulate the Capacity of Endothelial Cells (HUVEC) to Express P-selectin and Bind a Monocytic Cell Line (U937)

2001 ◽  
Vol 86 (08) ◽  
pp. 680-685 ◽  
Author(s):  
Kamal Chettab ◽  
Jacques Duhault ◽  
Elisabeth Koenig-Berard ◽  
John McGregor ◽  
Marta Puente Navazo

SummaryDiabetes mellitus is associated with increased prevalence of endothelial cell dysfunction and vascular diseases. Mechanisms leading to alterations in endothelial cell function are poorly understood. We report here that hyperglycaemia results in the expression of endothelial adhesion molecules involved in leukocyte adhesion and extravasation. Incubation of human umbilical cord endothelial cells (HUVEC) with 25 mM glucose induced the expression of P-selectin. This effect was reversed by the addition of 1 nM insulin. Moreover, increased ICAM-1 expression was observed upon HUVEC incubation with 25 mM glucose. Increased adhesion of U937 cells (a monocytic cell line) to endothelial cells cultured with 25 mM glucose was observed. High glucose-induced monocytes cell adhesion was inhibited by an anti-P-selectin monoclonal antibody (LYP20). These results show that high glucose concentration activates endothelial cells leading to monocytes adhesion providing further evidence that hyperglycaemia might be implicated in vessel wall lesions contributing to diabetic vascular disease.Present address: Dr. M. D. Puente Navazo, Centre Pluridisciplinaire d’Oncologie, ISREC, Epalinges, Switzerland

Author(s):  
Steven F. Kemeny ◽  
Alisa Morss Clyne

Endothelial cells line the walls of all blood vessels, where they maintain homeostasis through control of vascular tone, permeability, inflammation, and the growth and regression of blood vessels. Endothelial cells are mechanosensitive to fluid shear stress, elongating and aligning in the flow direction [1–2]. This shape change is driven by rearrangement of the actin cytoskeleton and focal adhesions [2]. Hyperglycemia, a hallmark of diabetes, affects endothelial cell function. High glucose has been shown to increase protein kinase C, formation of glucose-derived advanced glycation end-products, and glucose flux through the aldose reductase pathway within endothelial cells [3]. These changes are thought to be related to increased reactive oxygen species production [4]. While endothelial cell mechanics have been widely studied in healthy conditions, many disease states have yet to be explored. Biochemical alterations related to high glucose may alter endothelial cell mechanics.


2014 ◽  
Vol 2014 ◽  
pp. 1-28 ◽  
Author(s):  
Gaia Favero ◽  
Corrado Paganelli ◽  
Barbara Buffoli ◽  
Luigi Fabrizio Rodella ◽  
Rita Rezzani

The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions.


2002 ◽  
Vol 282 (2) ◽  
pp. C395-C402 ◽  
Author(s):  
Christy-Lynn M. Cooke ◽  
Sandra T. Davidge

Peroxynitrite, a marker of oxidative stress, is elevated in conditions associated with vascular endothelial cell dysfunction, such as atherosclerosis, preeclampsia, and diabetes. However, the effects of peroxynitrite on endothelial cell function are not clear. The endothelium-derived enzymes nitric oxide synthase (NOS) and prostaglandin H synthase (PGHS) mediate vascular reactivity and contain oxidant-sensitive isoforms (iNOS and PGHS-2) that can be induced by nuclear factor (NF)-κB activation. We investigated the effect(s) of peroxynitrite on NOS and PGHS pathways in endothelial cells. We hypothesized that peroxynitrite will increase levels of iNOS and PGHS-2 through activation of NF-κB. Western immunoblots of endothelial cells show that 3-morpholinosydnonimine (SIN-1; 0.5 mM), a peroxynitrite donor, increased iNOS protein mass, which can be inhibited by pyrroline dithiocarbamate (an NF-κB inhibitor) (167 ± 24.2 vs. 78 ± 19%, P < 0.05, n = 6). SIN-1 treatment also significantly increased NF-κB translocation into endothelial cell nuclei (135 ± 10%, P < 0.05). Endothelial NOS, PGHS-1, and PGHS-2 protein levels were not altered by SIN-1. However, prostacyclin synthase protein mass, but not mRNA, was significantly reduced in SIN-1-treated endothelial cells (78 ± 8.9%, P < 0.05). Our results illustrate novel mechanisms through which peroxynitrite may modulate vascular endothelial function.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 931-939 ◽  
Author(s):  
Cassin Kimmel Williams ◽  
Ji-Liang Li ◽  
Matilde Murga ◽  
Adrian L. Harris ◽  
Giovanna Tosato

AbstractDelta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)-A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are currently not defined. In this study, we generated primary human endothelial cells that overexpress Dll4 protein to study Dll4 function and mechanism of action. Human umbilical vein endothelial cells retrovirally transduced with Dll4 displayed reduced proliferative and migratory responses selectively to VEGF-A. Expression of VEGF receptor-2, the principal signaling receptor for VEGF-A in endothelial cells, and coreceptor neuropilin-1 was significantly decreased in Dll4-transduced endothelial cells. Consistent with Dll4 signaling through Notch, expression of HEY2, one of the transcription factors that mediates Notch function, was significantly induced in Dll4-overexpressing endothelial cells. The γ-secretase inhibitor L-685458 significantly reconstituted endothelial cell proliferation inhibited by immobilized extracellular Dll4 and reconstituted VEGFR2 expression in Dll4-overerexpressing endothelial cells. These results identify the Notch ligand Dll4 as a selective inhibitor of VEGF-A biologic activities down-regulating 2 VEGF receptors expressed on endothelial cells and raise the possibility that Dll4 may be exploited therapeutically to modulate angiogenesis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 845-845
Author(s):  
Tatiana Byzova ◽  
Juhua Chen ◽  
Payaningal R. Somanath

Abstract The major mechanism to adapt to ischemic conditions is the development of neovascularization, i.e. angiogenesis, a process driven by members of VEGF family of growth factors. Phosphoinositide 3-kinase/Akt pathway is a critical component of the signaling network that regulates endothelial cell function related to angiogenesis. VEGF treatment of endothelial cells results in rapid phosphorylation of Akt. Our studies demonstrated that Akt kinase activity is necessary for VEGF-induced and integrin-mediated endothelial cell adhesion and migration. Moreover, cell transfection with a constitutive active form of Akt (myr-Akt) leads to increased function of integrin receptors. Using Akt-1 null mice we found that Akt-1 controls VEGF-induced and integrin-dependent endothelial cell responses in vitro. Impaired endothelial cell migration and adhesion to extracellular matrix and a reduced rate of cell proliferation were observed in Akt-1 (−/−) endothelial cells compared to WT. There are three Akt isoforms with different tissue distribution, however, it appears that Akt-1 is a predominant isoform in skin and in skin microvasculature. This observation prompted us to perform series of in vivo experiments designed to assess the angiogenic response in skin in the absence of Akt-1. Angiogenesis assay using matrigel plugs revealed that the weight and hemoglobin content of matrigel plugs is about two fold higher in Akt (−/−) mice compared to WT mice. Tumor angiogenesis also appears to be enhanced in Akt(−/−) mice, resulting in the significantly lower degree of tumor necrosis. Blood vessels in Akt (−/−) mice appear to be smaller in diameter and have reduced laminin content. Our analysis revealed significant changes in blood vessel wall matrix composition of Akt (−/−) mice as compared to WT animals. These changes resulted in increased vascular permeability in skin of Akt (−/−) mice. Akt-1 is known to target multiple cellular processes including adhesive properties, cell survival, transcription and translation. It appears that the phenotype of Akt-1 (−/−) mice depends on the equilibrium between pro-angiogenic and anti-angiogenic roles of Akt-1 and reveals a central role for Akt-1 in the regulation of matrix production and maturation of blood vessels.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 15648-15648
Author(s):  
G. Bartsch ◽  
K. Eggert ◽  
S. Loges ◽  
W. Fiedler ◽  
E. Laack ◽  
...  

15648 Background: Combinations of cytotoxic drugs lead to increased activity and minimize resistance compared to single agents in tumor therapy. Similarly, antiangiogenic treatment could be improved by combinations targeting different pathways. We investigated a combination of endogenous inhibitors using endostatin (ES), soluble Neuropilin-1 (sNP-1), and thrombospondin-2 (TSP-2) in a model of renal cell carcinoma. Methods: Porcine aortic endothelial cells have been engineered for stable production of angiogenic inhibitors by lipofection and were encapsulated in sodium alginate microbeads. Proliferation of human umbilical vein endothelial cells or Renca renal carcinoma cells was examined after incubation with different microbeads. Similarly, effects of inhibitors on endothelial cell function were tested in tube formation and in vitro wound assays. Microbeads were implanted into SCID mice with subcutaneously growing tumors derived from Renca cells or in mice developing lung metastases after intravenous injection of tumor cells. Results: Factors released from microbeads inhibited endothelial cell function but had no effect on tumor cell proliferation in vitro. In vivo, subcutaneous tumor growth was inhibited similarly by each angiogenic inhibitor alone. After 30 days mean tumor weight was 1.3 g in controls and 0.17, 0.18, 0.18g in ES, sNP-1, and TSP-2 treated mice, respectively. Tumor weight in mice treated with all three inhibitors was further reduced to 0.03g. Histological analyses confirmed antiangiogenic activity by inhibition of microvessel density in treated tumors. In a metastastic model treatment with angiogenic inhibitors induced a significant reduction in size and number of lung metastases with additive effects when factors were used in combination. Conclusions: We conclude that combination therapy targeting multiple angiogenic pathways has synergistic activity and could help to avoid resistance to single inhibitors in tumor treatment. No significant financial relationships to disclose.


2013 ◽  
Vol 68 (1) ◽  
pp. 144-153 ◽  
Author(s):  
Takayuki Okamoto ◽  
Nobuyuki Akita ◽  
Masashi Nagai ◽  
Tatsuya Hayashi ◽  
Koji Suzuki

Sign in / Sign up

Export Citation Format

Share Document