Application of radioactive substances in research in nuclear medicine: current trends and radiation exposure to the study subjects

2001 ◽  
Vol 40 (04) ◽  
pp. 116-121 ◽  
Author(s):  
E.-R. Schwarz ◽  
B. Bauer ◽  
D. Noßke ◽  
A. Erzberger ◽  
G. Brix ◽  
...  

SummaryAim: Analysis of the application of radioactive substances in research in the field of nuclear medicine in human beings and of the resulting radiation exposure to study subjects. Methods: Assessment of applications for approval submitted in accordance with Paragraph 41 of the Radiation Protection Ordinance, evaluated by the Federal Office for Radiation Protection together with the Federal Institute for Pharmaceuticals and Medical Products, within the period from 1997 to 1999. Results: The focus of the studies on the diagnostic application of radioactive substances in medicine evaluated has, since 1998, shifted from oncological to neurological and psychological aspects, while, at the same time, the number of PET studies increased constantly. The proportion of healthy study subjects included in the diagnostic studies increased from 7 to 22%. The number of therapeutic applications of radioactive substances has, since 1997, undergone a three-fold increase, and in the process of this, the focus of attention lay within the area of radioimmuno-therapy and endovascular brachy-theropy. The effective dose was, among up to 49% of the investigated healthy study subjects higher than 5 mSv, and among up to 6% of these subjects was at levels of over 20 mSv. Up to 22% of the patients received, within the scope of diagnostic studies, an effective dose of between 20 and 50 mSv. An exceeding of the 50 mSv limit occurred among up to 3% of the patients. Conclusions: In spite of the increasing numbers of PET applications, conventional nuclear medicine has maintained its importance in the field of medical research. Further developments in the areas of radiochemistry and molecular biology led to an increase in the importance of radio-immuno therapy. The evaluation of new radiopharmaceuticals and the extension of basic biomedical research, resulted in an increase in the proportion of healthy study subjects included in the studies. The radiation exposure among subjects resulting directly from the studies showed, for the period of evaluation, an overall trend towards reduction.

2008 ◽  
Vol 47 (04) ◽  
pp. 175-177 ◽  
Author(s):  
J. Dolezal

SummaryAim: To assess a radiation exposure and the quality of radiation protection concerning a nuclear medicine staff at our department as a six-year retrospective study. Therapeutic radionuclides such as 131I, 153Sm, 186Re, 32P, 90Y and diagnostic ones as a 99mTc, 201Tl, 67Ga, 111In were used. Material, method: The effective dose was evaluated in the period of 2001–2006 for nuclear medicine physicians (n = 5), technologists (n = 9) and radiopharmacists (n = 2). A personnel film dosimeter and thermoluminescent ring dosimeter for measuring (1-month periods) the personal dose equivalent Hp(10) and Hp(0,07) were used by nuclear medicine workers. The wearing of dosimeters was obligatory within the framework of a nationwide service for personal dosimetry. The total administered activity of all radionuclides during these six years at our department was 17,779 GBq (99mTc 14 708 GBq, 131I 2490 GBq, others 581 GBq). The administered activity of 99mTc was similar, but the administered activity of 131I in 2006 increased by 200%, as compared with the year 2001. Results: The mean and one standard deviation (SD) of the personal annual effective dose (mSv) for nuclear medicine physicians was 1.9 ± 0.6, 1.8 ± 0.8, 1.2 ± 0.8, 1.4 ± 0.8, 1.3 ± 0.6, 0.8 ± 0.4 and for nuclear medicine technologists was 1.9 ± 0.8, 1.7 ± 1.4, 1.0 ± 1.0, 1.1 ± 1.2, 0.9 ± 0.4 and 0.7 ± 0.2 in 2001, 2002, 2003, 2004, 2005 and 2006, respectively. The mean (n = 2, estimate of SD makes little sense) of the personal annual effective dose (mSv) for radiopharmacists was 3.2, 1.8, 0.6, 1.3, 0.6 and 0.3. Although the administered activity of 131I increased, the mean personal effective dose per year decreased during the six years. Conclusion: In all three professional groups of nuclear medicine workers a decreasing radiation exposure was found, although the administered activity of 131I increased during this six-year period. Our observations suggest successful radiation protection measures at our department.


2017 ◽  
Vol 15 (1) ◽  
pp. 57-69
Author(s):  
O O ALATISE ◽  
A A ADEPOJU

The study of “external” radiation called cosmic radiation that strikes the earth from anywhere beyond the atmosphere is of great importance in radiation protection. All human beings are exposed to an uncontrollable amount of cosmic radiation on the ground level. Those who travel in space, airline crews and frequent flyers are exposed to additional level of cosmic radiation during their trip but unfor-tunately many of them are not aware of this. This workcalculates the exposure of aircrews and fre-quent flyers to cosmic radiation during travel along some air routes to and from Nigeria. The effective dose was computed using a dedicated software CARI 6M, developed by US FAA.The study focuses on the significance of the in-flight exposure, assessment and estimation of in-flight exposure using the dedicated software and some ways of controlling the exposures so that airline crews and frequent flyers are not exposed to fatal levels of radiation.It was observed that the cosmic radiation doses re-ceived by passengers and crew members on board on flights from Lagos Nigeria to countries in Amer-ica were more than what they received en-route countries in Asia.


2020 ◽  
Vol 14 (2) ◽  
pp. 100-103
Author(s):  
Md Hafizur Rahman

The field of Radiology and Nuclear medicine has advanced from era of X-rays to today's modern imaging techniques, most of which use the ionizing radiation. With the benefits of better diagnosis and treatment, it has caused manifold increase in radiation exposure to the patients and the radiology and nuclear medicine personnel. Many studies done till date have clearly documented the harmful effects of ionizing radiation from radiation exposure, especially cancer. This is more important in paediatric population as their tissues are more radiosensitive, and they have more years to live. Diagnostic and therapeutic radiological procedures including nuclear medicine are integral part of modern medical practices, exposing both patients and medical staff to ionizing radiation. Without proper protective measures, this radiation causes many negative health effects. Hence, proper knowledge and awareness regarding the radiation hazards and radiation protection is mandatory for health professionals, especially the nuclear medicine and radiology professionals. International Commission on Radiation Protection (ICRP) has recommended two basic principles of radiation protection, justification of the practice and optimization of protection. Faridpur Med. Coll. J. Jul 2019;14(2): 100-103


Author(s):  
Nikant Sabharwal ◽  
Parthiban Arumugam ◽  
Andrew Kelion

This chapter explains the basics of radiation physics, including an explanatory section on atoms and nuclei, and detail on radioactive decay including statistics. The interaction of X-ray and gamma photons with matter is also explained. Detail is provided on radiation exposure, including acute and late biological effects, and the principles and practical applications of radiation protection. A section on key UK legislation relevant to nuclear cardiology lists important medicines regulations and acts relating to radioactive substances.


Dose-Response ◽  
2007 ◽  
Vol 6 (4) ◽  
pp. dose-response.0 ◽  
Author(s):  
Bobby R. Scott

The current system of radiation protection for humans is based on the linear-no-threshold (LNT) risk-assessment paradigm. Perceived harm to irradiated nuclear workers and the public is mainly reflected through calculated hypothetical increased cancers. The LNT-based system of protection employs easy-to-implement measures of radiation exposure. Such measures include the equivalent dose (a biological-damage-potential-weighted measure) and the effective dose (equivalent dose multiplied by a tissue-specific relative sensitivity factor for stochastic effects). These weighted doses have special units such as the sievert (Sv) and millisievert (mSv, one thousandth of a sievert). Radiation-induced harm is controlled via enforcing exposure limits expressed as effective dose. Expected cancer cases can be easily computed based on the summed effective dose (person-sievert) for an irradiated group or population. Yet the current system of radiation protection needs revision because radiation-induced natural protection (hormesis) has been neglected. A novel, nonlinear, hormetic relative risk model for radiation-induced cancers is discussed in the context of establishing new radiation exposure limits for nuclear workers and the public.


2013 ◽  
Vol 47 (3) ◽  
pp. 304-310 ◽  
Author(s):  
Damijan Skrk ◽  
Dejan Zontar

Abstract Background. A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. Methods. A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. Results. The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. Conclusions. The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures.


2018 ◽  
Vol 53 (1) ◽  
pp. 45-50
Author(s):  
C. Peștean ◽  
E. Bărbuș ◽  
M.L. Larg ◽  
D. Piciu

Background: F18-PET/CT technique has been permanently optimized to ensure the best accuracy and to extend its clinical application. Radiation protection remains an omnipresent aspect of daily practice in F18-PET/CT. Introduction: We tried to demonstrate the usefulness of remotely controlled radiopharmaceutical dispensers with smart-phones or tablets in the optimization of staff exposure. Material and methods: We performed a study to evaluate the exposure during loading and dispensing of radiopharmaceuticals working in two different ways: according to the user's manual of the automatic dispenser and, respectively, with an e-controlling application. We calculated the maximal radiation exposure and analyzed the differences related to the annual effective dose. Have been considered 40 loading and 353 dispensing procedures. During the loading, it has been manipulated a total activity of 9348.8 mCi (345905.6 MBq) FDG. A total activity of 2622.5 mCi (97032.5 MBq) FDG has been manipulated during dispensing. Results: The effective dose resulted from the loading procedure measured at the dispenser contact was 445.05 µSv. The effective dose measured in the remote control area during the loading procedure was 0.34 µSv, having a difference of 444.71 µSv. The total effective dose during dispensing procedures measured at the dispenser was 206.6 µSv and the total effective dose measured in the controlling room was 2.64 µSv, thus a difference of 203.96 µSv. The cumulative difference between the effective doses was of 648.67 µSv. Discussion: E-controlling the dispenser, we got an exposure saving representing 61.2% from the operator's annual dose. Conclusions: This study demonstrates the effectiveness of e-controlling devices in radiation protection of the staff working in F18-PET/CT.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Ann M. Larkin ◽  
Yafell Serulle ◽  
Steven Wagner ◽  
Marilyn E. Noz ◽  
Kent Friedman

Purpose. We quantify the additional radiation exposure in terms of effective dose incurred by patients in the CT portion of SPECT/CT examinations. Methods. The effective dose from a variety of common nuclear medicine procedures is calculated and summarized. The extra exposure from the CT portion of the examination is summarized by examination and body part. Two hundred forty-eight scans from 221 patients are included in this study. The effective dose from the CT examination is also compared to average background radiation. Results. We found that the extra effective dose is not sufficient to cause deterministic effects. However, the stochastic effects may be significant, especially in patients undergoing numerous follow-up studies. The cumulative effect might increase the radiation exposure compared to patient management with SPECT alone. Conclusions. While the relative increase in radiation exposure associated with SPECT/CT is generally considered acceptable when compared with the benefits to the patient, physicians should make every effort to minimize this effect by using proper technical procedures and educating patients about the exposure they will receive.


2004 ◽  
Vol 43 (02) ◽  
pp. 45-56 ◽  
Author(s):  
P. Schnell-Inderst ◽  
D. Noßke ◽  
M. Weiss ◽  
A. Stamm-Meyer ◽  
G. Brix ◽  
...  

Summary Aim: A pilote study for estimation of radiation exposure due to diagnostic procedures in nuclear medicine using routine data of hospitals and practices in Germany. Methods: Hospitals and practices willing to participate in the study supplied data of one year (1997), containing information on patients´ identification number, age, sex, type of diagnostic procedure, radiopharmaceutical, administered activity, type of health insurance (private/ public), inpatient/outpatient status, and so-called Leistungsziffer, which describes the type of medical performances in Germany. The effective dose per examination was calculated according to ICRP 80. Mean, standard deviation, median, 5th and 95th percentiles of the effective dose were calculated, stratified by type of organ system and also by sex and age, including patients of ≥18 years. Results: 82 039 examinations from patients of 9 hospitals and practices were analyzed. The median (5-95th percentiles) of the effective dose per examination for all patients was 2.9 mSv (0.4-8.5 mSv); 1.2 examinations per patient and year were performed on average. The three most frequent examinations were bone scans (median 3.4 mSv; 2.9-5.1), thyroid (0.9 mSv; 0.4-2.2) and cardiovascular studies (7.3 mSv; 3.8-20.2). The median effective dose for 18 to 40 years old women was 1.0 mSv (0.4-5.8), for women between 41 and 65 years 2.2 mSv (0.4-7.3) and for women older than 65 years 2.4 mSv (0.5- 7.6). The corresponding values for men were 2.6 mSv (0.3-7.6); 3.3 mSv (0.4-9.1), and 3.4 mSv (0.5- 8.8). Conclusion: It was possible to gain an accurate determination of radiation exposure of diagnostic procedures in nuclear medicine by routine data.


2005 ◽  
Vol 44 (05) ◽  
pp. 119-130 ◽  
Author(s):  
P. Schnell-Inderst ◽  
D. Noßke ◽  
M. Weiss ◽  
A. Stamm-Meyer ◽  
G. Brix ◽  
...  

Summary:The aim of this study was to estimate both the frequency and effective dose of nuclear medicine procedures performed in Germany between 1996 and 2000 for different subgroups of patients. Methods: Electronically archived data from 14 hospitals and 10 private practices were restored and statistically analyzed. The effective dose per examination was calculated according to ICRP publication 80 using the tissue weighting factors given in ICRP publication 60. Based on the data collected, statistical parameters were computed to characterize the frequency and effective dose of the various nuclear medicine procedures. Results: In total, 604,771 nuclear medicine procedures performed in 433,709 patients were analyzed. On average, 1.4 examinations were carried out per patient and year. The median effective dose was 1.7 [5.-95. percentile; mean: 0.4–8.5; 2.9] mSv per examination and 2.3 [0.5–11.2; 3.5] mSv per patient. Interestingly, the mean effective dose per examination, but not the number of examinations per year increased with the age of the patients. Most frequent were examinations of the thyroid (36.7%), the skeleton (27.1%) and the cardiovascular system (11.1%), which were associated with a median effective dose of 0.5 [0.5–1.1; 0.7] mSv, 3.4 [2.9–5.1; 3.6] mSv and 7.3 [3.2–21.0; 9.5] mSv, respectively. Over the five-year period examined, the total annual number of PET procedures (222.3%) as well as of examinations of thyroid (24.5%), skeleton (17.9%), and the cardiovascular system (14.9%) increased markedly, whereas a decrease was observed for brain (-39.3%), lung (-20.2%) and renal (-15.0%) scans. Conclusion: The age- and gender-specific data presented in this study provide detailed public health information on both the current status and recent trends in the practice of diagnostic nuclear medicine examinations.


Sign in / Sign up

Export Citation Format

Share Document